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Absorption and eigenmode calculation for one-dimensional periodic metallic structures
using the hydrodynamic approximation
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We develop a modal method that solves Maxwell’s equations in the presence of the linearized hydrodynamic
correction. Using this approach, it is now possible to calculate the full diffraction for structures with a period of
the order of the plasma wavelength, including not only the transverse but also the longitudinal modes appearing
above the plasma frequency. As an example for using this method we solve the diffraction of a plane wave near
the plasma frequency from a bimetallic layer, modeled as a continuous variation of the plasma frequency. We
observe absorption oscillations around the plasma frequency. The lower frequency absorption peaks and dips
correspond to the lowest longitudinal modes concentrated in the lower plasma frequency region. As the frequency
is increased, higher order longitudinal modes are excited and extend to the region of higher plasma frequency.
Moreover, an examination of the propagation constants of these modes reveals that the absorption peaks and dips
are directly related to the direction of phase propagation of the longitudinal modes. Furthermore, we formulate a
variant of the plane wave expansion method, and use it to calculate the dispersion diagram of such longitudinal
modes in a periodically modulated plasma frequency layer.
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I. INTRODUCTION

Along with advances in nanoplasmonics, plasmonic devices
reach length scales for which nonlocal effects of the metal elec-
tric permittivity function may no longer be neglected. For noble
metals with critical dimensions in the sub-10 nm regime, the
longitudinal plasmonic response exhibits spatial dispersion.
This deviation from the ordinary local approximation requires
modification of known analytical and numerical tools. The
hydrodynamic nonlocal model1–4 can be regarded as a simple
approach (compared to more complex, quantum models).
However, it successfully reproduces experimental results
obtained for thin layered metals5 and offers a qualitative ex-
planation for the blueshifting of the localized surface-plasmon
resonance observed in silver nanoparticles.6,7 These results
cannot be explained with local models. In this paper, we study
the response of a metallic layer with periodic variation of the
free-carrier density, under the hydrodynamic approximation.
While the hydrodynamic model fails to account for quantum-
size effects, such as quantum tunneling,8–10 it is a well
established model for the dimensions studied here. Until now,
various numerical algorithms that solve Maxwell’s equations
with the hydrodynamic correction have been reported.11–19

In this paper, we provide a rigorous numerical approach that
allows the calculation of one-dimensional (1D) periodic struc-
tures. Our method relies on the Fourier modal method (FMM),
also known as the rigorous coupled wave analysis (RCWA)
method.20–22 This method can be regarded as semianalytic
in the sense that not only the field distribution is calculated,
but also the propagation constants and the eigenmodes of the
periodic structure are obtained, allowing to derive additional
physical insight (see, e.g., Ref. 23). Adding the hydrodynamic
terms to the ordinary FMM formulation allows us to utilize
some of the strengths that are offered by FMM. The paper is
structured as follows. In Sec. II the FMM with the additional
hydrodynamic terms is presented. In addition, we formulate
the band diagram dispersion calculation of the longitudinal

modes. In Sec. III, results based on this framework are shown.
Section IV concludes the paper.

II. FMM WITH THE HYDRODYNAMIC CORRECTION

First, we briefly review the essential basics of the FMM.
Further details can be found in several references, e.g., Refs. 20
and 21. In its most common formulation, the FMM uses a
Floquet-Bloch expansion within a unit cell 0 � x < L (see
the schematic in Fig. 1) to represent Maxwell’s equations in
each z-invariant periodic layer. Afterwards, the eigenmodes
and eigenvalues of the fields are calculated by solving an
eigenvalue equation. We now elaborate on these principles.
The Floquet-Bloch condition implies that the wave vectors
in the x direction are given by kx,m = kx,0 + mK , where
K = 2π/L is the grating vector and kx,0 is the “zero-order”
term. With the FMM, Maxwell’s equations are solved for
each locally z-invariant layer, from an eigenvalue equation
of the form ∂

∂z
F = AF. Here, F is a column vector of the

Fourier components of the fields and A is an operator matrix
defined by Maxwell’s equations. The propagation constants
kz,n are obtained by solving this eigenvalue equation. In order
to solve the eigenvalue equation numerically, one must truncate
the number of Fourier components to some finite number
of N elements, with −�N/2� � m � �N/2�. Generally, the
solution converges to the exact solution by increasing N . In
order to solve a diffraction problem, the fields in adjacent layers
are matched by employing the proper boundary conditions.
By this matching procedure, a mode amplitude constant Cn is
solved for the nth eigenmode.20 In the following we present
the derivation of the matrix operator A in the presence of the
hydrodynamic correction.

A. Maxwell’s equations with the hydrodynamic correction

In each z-invariant layer, and for a single frequency compo-
nent ω, Maxwell’s equations with the linearized hydrodynamic
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FIG. 1. (Color online) Schematic showing two unit cells of the
diffraction problem geometry, with light incident from left to right.
The air/metal interface is located at z = 0, and the direction of
periodicity is along the vertical (i.e., x) axis. The region with reduced
free-carrier density is in the center of the unit cell (bright), whereas
the boundaries of the unit cell are the region with higher free-carrier
density (dark).

correction are given by19,24

∇ × E − jωμ0H = 0, (1a)

∇ × H + jωε0E + eN0(x)v = 0, (1b)

ε0∇ · E + en1 = 0, (1c)

∇ · (N0(x)v) − jωn1 = 0, (1d)

−jmω(N0(x)v) + mγ (N0(x)v) + N0(x)eE + mβ2∇n1 = 0,

(1e)

where N0(x) is a periodic function of the density of free
electrons in equilibrium, n1 is the first-order nonequilibrium
correction to the equilibrium electron density, and likewise
v is the first-order nonequilibrium electron velocity while
there are no equilibrium currents. Furthermore, the strength
of the nonlocal response is governed by β2 = 3

5v2
F . The

electron mass is denoted by m. The case where N0 varies
with x while β is constant can be regarded as a toy
model for the scenario in which two metals with differ-
ent plasma frequencies fill the unit cell, with continuous
variation of the free-carrier density. We solve the set of
Eq. (1) for TM polarization [i.e., H (x,y,z) = ŷHy(x,z) and
E(x,y,z) = x̂Ex(x,z) + ẑEz(x,z)], as only this polarization
supports longitudinal modes. As explained above, in order to
solve Eq. (1) with standard FMM formulation, we need to
isolate all ∂

∂z
dependencies to obtain an eigenvalue equation.

For convenience, we introduce ω̂2 = ω(ω + iγ ), β̃2 = β2/c2,
ω̃2

p = ω2
p/c2 = N0e

2

mε0
/c2, k̂0 = ω̂/c, μ̃0 = cμ0, and ε̃0 = cε0 =

μ̃−1
0 . Furthermore, we define the hydrodynamic current as J =

eN0v and J (x,y,z) = x̂Jx(x,z) + ẑJz(x,z). Since we have
spatial harmonic variations, we straightforwardly make the
following substitutions for the derivatives: ∂/∂z = jk0kz and
∂/∂x = jk0kx . Making these substitutions and performing al-
gebraic manipulations described in some detail in Appendix A,

we arrive at the eigenvalue equation in matrix form:[
Ex

∇ · J

] [
K2

z

]

=
[

μ̃0I Kx

k̂2
0 β̃

−2Kx ε̃0β̃
−2

(
k̂2

0I − �2
p

)
]

×
[

ε̃0k̂
−2
0

(
k̂2

0I − �2
p

) −k̂−2
0 β̃2Kx

−Kx μ̃0k
−2
0 I

] [
Ex

∇ · J

]
. (2)

Here, Ex and ∇ · J are the eigenvector matrices of Ex and
∇ · J , respectively. Kx and Kz are diagonal matrices with
elements kx,m and kz,n, respectively, and the identity matrix
is I. �2

p is the Toeplitz matrix with elements corresponding to

the Fourier components of ω̃2
p(x). The matrices I, �2

p, Kx, Ex,
and ∇ · J are of size N × N , while Kz is a 2N × 2N matrix
and the overall number of eigenmodes obtained from Eq. (2)
is 2N . However, in local media, the number of eigenmodes is
equal to the truncation number, i.e., N .20 Therefore, a total
of 3N mode amplitude constants need to be found when
matching the fields at the interface of a local layer with a layer
with nonlocal response. The ordinary boundary conditions
demanding continuity of the tangential field components Ex

and Hy provide only 2N equations. To match the “missing”
N amplitude constants, an additional boundary condition
(ABC) is required. This is very similar to the known case
of matching the field amplitudes between two homogeneous
local and nonlocal layers.25 For simplicity, we consider an
air/metal interface. For this case, the boundary conditions are
the continuity of Ex , Jz, and Ez across the interface.3,26,27 We
note, however, that the ABC does not change in any way the
eigenvalue equation of the periodic metallic layer, which is a
direct solution of Maxwell’s equations with the hydrodynamic
correction. In Sec. III A, we solve a full diffraction problem for
the case of light incident from air on a semi-infinite periodic
nonlocal layer. At the interface of both media, the mode
amplitude constants are found by employing these boundary
conditions. In Appendix B, we present a procedure based
on the S-matrix algorithm22 for the calculation of the mode
amplitudes. For completeness, this procedure is formulated for
the more general case of a nonlocal periodic layer embedded
in a local environment.

B. Band diagram calculation

In order to calculate the dispersion diagram of the longitu-
dinal modes, we follow an approach based on that in Ref. 28.
This approach is a variant of the plane wave expansion method
(PWM).29 In contrast to the conventional PWM, where the
Bloch wave vector (kx,0) is assumed and the frequency (ω) is
solved from an eigenvalue problem, in the revised PWM, the
frequency is assumed beforehand, and the phase difference of
the fields across the unit cell (known as the Bloch wave vector)
is calculated. We note that for nondispersive lossless materials
there is a freedom to choose one or the other. However, for
the dispersive metal it is important that one solves for the
complex Bloch wave vector while treating the frequency as
real (alternatively, one can also solve for complex ω; see
Ref. 30). This is relevant for the experimental situation where
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the structure is probed by a cw laser with a well-defined
frequency. We now show how the PWM variant can be applied
to calculate the dispersion diagram of a metallic structure with
the hydrodynamic correction. For simplicity, we assume a 1D
case with kz = 0, and that ωp is periodic with x. For such a
case, Eq. (1) [see also Eq. (A3)] reduces to three first-order
differential equations:

kxEz + μ̃0Hy = 0, (3a)

ε̃0εT Ez + kxHy = 0, (3b)

Ex − k̂−2
0 ω̃2

p(x)Ex − k̂−2
0 k2

0 β̃
2k2

xEx = 0. (3c)

Here εT ≡ 1 − ω̃2
p(x)

k̂2
0

. Equations (3) can be subdivided into

two independent sets: Equations (3a) and (3b) describe
the transverse modes (no field components in the direction
of the only nonzero k-vector component, i.e., kx) while
Eq. (3c) defines the dispersion law of the longitudinal modes.

Moreover, by defining εL ≡ 1 − ω̃2
p(x)

k̂2
0−k2

0 β̃2k2
x

, Eq. (3c) can be

rewritten as εLEx = 0, from which the familiar condition for
longitudinal modes εL = 0 is apparent. To solve Eq. (3c), we
define kx ≡ kx,0 + kx,m. Here k0kx,0L is the phase difference
of the field F between the two boundaries of the unit cell
according to F (x = L) = F (x = 0) exp(jk0kx,0L) and kx,m =
mK . With these definitions, and the auxiliary field quantity
Ėx ≡ [kx,0 + kx,m]Ex , we split Eq. (3c) into two first-order
equations

β̃−2k−2
0

[
k̂2

0 − ω̃2
p(x)

]
Ex − [kx,0 + kx,m]Ėx = 0, (4a)

Ėx = [kx,0 + kx,m]Ex. (4b)

Equation (4) can be recast to the matrix form:[
Ėx

Ex

] [
Kx,0

] =
[

−Kx β̃−2k−2
0

(
k̂2

0I − �2
p

)
I −Kx

] [
Ėx

Ex

]
. (5)

Here Kx,0 is a 2N × 2N diagonal matrix with elements
corresponding to the phase difference between the boundaries
of the unit cell of each eigenmode, and Kx is an N × N

diagonal matrix with elements kx,m = mK . Equation (5) can
be identified as an eigenvalue equation from which the matrix
of phase constants Kx,0 can be obtained.

III. SIMULATION RESULTS

A. Absorption spectrum of a semi-infinite metallic layer
with sinusoidal modulation of ω p

As a first application of the modified FMM, we first consider
the following toy geometry: A TM plane wave is normally
incident upon a semi-infinite metallic layer, with modulation
of the plasma frequency given by ω2

p = ω2
p,0 + ω2

p,1 cos( 2πx
L

).
The material parameters are γ = ωp,0/300, vF = 0.01c,
and λp ≡ 2πc

ωp,0
= 5L. The calculation has been repeated for

the following three modulation amplitudes: ω2
p,1 = 0.1ω2

p,0,

0.05ω2
p,0, and 0. The results are shown in Fig. 2(a). Two

sets of absorption peaks are observed: (1) Absorption peaks
near the frequencies ∼(1/

√
2)ωp,0—these are surface waves

[surface-plasmon polariton (SPP) like] that are confined near
the interface. (2) Absorption oscillations appearing near ωp,0,
which are the consequence of longitudinal waves—it is seen

FIG. 2. (Color online) (a) Absorption spectrum of a semi-infinite
metallic layer with λp = 2πc

ωp,0
= 5L. Blue line: ω2

p,1 = 0.1ω2
p,0. Green

line: ω2
p,1 = 0.05ω2

p,0. Red line: ω2
p,1 = 0. (b) Real part of the

propagation constant with an absolute value closest to zero, calculated
for the case where ω2

p,1 = 0.1ω2
p,0.

that the oscillation strength increases as the plasma frequency
modulation amplitude increases. In Figs. 3(a) and 3(b) we
plot ∇ · J for the two lowest frequency absorption peaks
( ω
ωp,0

= 0.9605 and 0.9772), and in Figs. 3(c) and 3(d) we
plot the same quantities for the first two absorption dips
( ω
ωp,0

= 0.9674 and 0.9841). Since ∇ · J is proportional to the
induced charge density [see Eq. (1d)], it can be seen that
for the lower frequency modes, the induced charge density
concentrates in the middle of the unit cell where the plasma
frequency is minimal. This is consistent with previous studies
where a layer of metal with lower plasma frequency was
deposited on top of a higher plasma frequency metal. For
such a case, standing waves in the lower plasma frequency
region, similar to those in a 1D potential well, were observed
(see Ref. 3, Sec. 3.4). In addition, the calculation of Hy which
is a transverse field quantity (no magnetic field exists in a
longitudinal mode) shows that the magnetic field is negligible
compared to ∇ · J , manifesting that the modes are almost
completely longitudinal in nature. To reveal the reason for
the existence of the absorption peaks and dips, we plot in
Fig. 2(b) the real part of the propagation constant with the
absolute value closest to zero as a function of frequency, for the
case where ω2

p,1 = 0.1ω2
p,0. More mathematically stated, we

define kz,min ≡ min(|kz,n|2) and plot Re(kz,min). There is a clear
correspondence between the blue line in Figs. 2(a) and 2(b).
The dips and peaks of the absorption spectrum are located at the
minima and the maxima of Re(kz,min), respectively. The reason
for this is that when Re(kz) is relatively large, the longitudinal
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FIG. 3. (Color online) (a), (b) Real and imaginary parts of ∇ · J ,
calculated at the absorption peaks, located at (a) ω

ωp,0
= 0.9605 and (b)

ω

ωp,0
= 0.9772. (c), (d) Real and imaginary parts of ∇ · J , calculated

at the absorption dips, located at (c) ω

ωp,0
= 0.9674 and (d) ω

ωp,0
=

0.9841. The air/metal interface is at z = 0.

mode propagates with significant phase accumulation along
the z axis and eventually dissipates. On the other hand, when
Re(kz) ∼= 0, the longitudinal mode barely propagates into the
metal, but rather has a standing wave pattern along the x axis
(see the Supplemental Material31). This analysis shows the
strength of the FMM approach. Being a semianalytical method,
it provides physical insight due to the calculation of modes and
propagation constants.

B. Absorption spectrum of an Au/Ag bimetallic
semi-infinite layer

We now turn to analyze the case of an Au/Ag
semi-infinite layer. We assume ωp,Au = 8.55 eV, ωp,Ag =
9.6 eV, γAu = γAg = 0.02 eV, and vF,Au = vF,Ag = 0.0047c.
These parameters are from Ref. 32, with the simplify-
ing assumption that the damping in Au and Ag is the
same. In the unit cell 0 � x < L, the plasma frequency
is described by ω2

p(x) = arctan[(x − 0.5L)(f/L)](ω2
p,Au −

ω2
p,Ag)/π + (ω2

p,Au + ω2
p,Ag)/2. This function results in a

FIG. 4. (Color online) (a) Absorption spectrum of an Ag/Au
grating with L = 35 nm as a function of ω. (b) Absorption spectrum
of an Ag/Au grating with L = 10 nm as a function of ω. (c) The
distribution of ωp in the unit cell assumed for the calculation. (d) The
real part of ∇ · J , calculated for ω = 8.592 eV and L = 35 nm.

continuous steplike profile. The advantage of using such a
function is that it eliminates the need to take care of the correct
factorization rules of a piecewise discontinuous function,21,33

and also provides a more realistic description of the transition
between the two metals. The parameter f determines the
steepness of the transition between both media. In Fig. 4(a) we
plot the absorption spectrum, for f = 100 and L = 35 nm.
The steplike distribution of ωp in the unit cell is shown in
Fig. 4(c). Similarly to the case studied in Sec. III A, the

FIG. 5. (Color online) Dispersion of the longitudinal modes. (a)
Periodic case with ω2

p,1 = 0.02ω2
p,0. (b) Uniform case (ω2

p,1 = 0).
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FIG. 6. (Color online) The profile of |Jx |2 for the first to third bands of the dispersion diagram plotted in Fig. 5(a). (a) ω = 0.9936ωp,0,
(b) ω = 1.0005ωp,0, (c) ω = 1.0064ωp,0. All modes are calculated for kx,0 = 0.

absorption spectrum exhibts peaks near (1/
√

2)ωp,Au and
(1/

√
2)ωp,Ag. Additionally, there are absorption peaks due

to longitudinal modes for ωp,Au < ω < ωp,Ag. The reason no
absorption peaks are observed for ω > ωp,Ag is that the unit
cell is larger than the typical dimension (∼10 nm) for which
nonlocal effects are significant for these metals. However,
when ωp,Au < ω < ωp,Ag, longitudinal modes exist only in
the Au layer, which, for the assumed unit cell size, is small
enough to clearly observe longitudinal resonances. Indeed, for
a smaller unit cell with L = 10 nm, resonances of longitudinal
modes for ω > ωp,Ag are observed [see Fig. 4(b)]. In Fig. 4(d),
we show ∇ · J calculated for ω = 8.592 eV and L = 35 nm.
It can be observed that the longitudinal modes are confined in
the Au layer only.

C. Band diagram calculation

We now turn to calculating the 1D dispersion diagram of
longitudinal modes, based on the formulation described in
Sec. II B. We assume the following parameters: γ = 0 (no
losses), vF = 0.01c, and λp = 2πc

ωp,0
= 10L.

In Fig. 5(a) we assumed ω2
p,1 = 0.02ω2

p,0. For this case
both the band gaps at the edges of the first Brillouin zone
(BZ) and at kx,0 = 0 are apparent. Moreover, the dispersion
of the lower order modes is flat, which is an indication for a
very low group velocity, regardless of the specific momentum
value. This is in contrast to the more conventional case of a
periodic structure which generates slow light only at the edges
of the BZ. Losses (neglected here for simplicity), however,
cause broadening and enhance the group velocity at the band
edges.34 In Fig. 5(b) we assumed a uniform metallic medium
having no modulation, i.e., ω2

p,1 = 0. Obviously, for this case,
no band gaps are observed, as expected.

In Fig. 6 we plot the mode profile of |Jx(x)|2 (which is
proportional to the kinetic energy of the charges) for the first
three bands of the dispersion diagram plotted in Fig. 5(a). As
discussed before, it is seen that the lowest energy mode is
concentrated in the region of smaller plasma frequency.

IV. CONCLUSION

In summary, we have developed a semianalytical modal
approach to solve Maxwell’s equations in the presence of the
linearized hydrodynamic correction. With this approach, the

diffraction from a periodic metallic layer was calculated. The
modal method was shown to provide physical insight into
the calculated absorption spectrum, by detailed inspection of
the modal propagation constants. Longitudinal modes with
propagation constants close to zero were found to generate
absorption dips, while modes with maximal propagation
constants were related to the absorption peaks. Moreover,
we presented a general boundary condition matching scheme,
based on the S-matrix algorithm, that incorporated the ABC
needed to match between local and nonlocal media. In
addition, a variant of the PWM was formulated and used
in order to calculate the band diagram dispersion of the
longitudinal modes. These numerical tools might provide a
useful framework for the design of plasmonic circuit devices
at the very deep nanoscale.35
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APPENDIX A: DERIVATION OF THE EIGENVALUE
EQUATION

In this Appendix we outline the procedure of derivation of
Eq. (2) from Eq. (1). Equations (1a)–(1c) are rewritten as

∂

∂z
Ex = ∂

∂x
Ez + jωμ0Hy, (A1a)

∂

∂z
Hy = +jωε0Ex − jm−1ωω̂−2N0(x)e2Ex

−ω̂−2β2 ∂

∂x
∇ · J, (A1b)

∂

∂z
Ez = − ∂

∂x
Ex − (iωε0)−1 ∇ · J. (A1c)

Likewise, Eqs. (1d) and (1e) are combined to give

∂

∂z
∇ · J = β−2ω̂2

(
∂

∂x
Hy + jωε0Ez

)
− jωN0(x)e2β−2m−1Ez, (A1d)
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where Jx and Jz are eliminated from Eqs. (A1b) and (A1d)
according to

Jz = − ∂

∂x
Hy − jωε0Ez, (A2a)

Jx = −jm−1ωω̂−2N0(x)e2Ex − ω̂−2β2 ∂

∂x
∇ · J. (A2b)

Using the parameters defined in Sec. II, Eq. (A1) can be written
as

kzEx = kxEz + μ̃0Hy, (A3a)

kzHy = ε̃0Ex − ε̃0k̂
−2
0 ω̃2

p(x)Ex − k̂−2
0 β̃2kx∇ · J, (A3b)

kzEz = μ̃0k
−2
0 ∇ · J − kxEx, (A3c)

kz∇ · J = β̃−2k̂2
0kxHy + ε̃0β̃

−2k̂2
0Ez − ε̃0ω̃

2
p(x)β̃−2Ez.

(A3d)

Equations (A3) can be written in matrix form, as two first-order
coupled differential equations:[

Ex

∇ · J

]
[Kz] =

[
μ̃0I Kx

β̃−2k̂2
0Kx ε̃0β̃

−2
(
k̂2

0I − 	2
p

)
] [

Hy

Ez

]
,

(A4a)[
Hy

Ez

]
[Kz] =

[
ε̃0

(
I − k̂−2

0 	2
p

) −k̂−2
0 β̃2Kx

−Kx μ̃0k
−2
0 I

] [
Ex

∇ · J

]
.

(A4b)

By eliminating Hy and Ez, Eqs. (A4a) and (A4b) are combined
to obtain Eq. (2).

APPENDIX B: S-MATRIX FORMULATION FOR
NONLOCAL PERIODIC LAYERS EMBEDDED IN

A LOCAL ENVIRONMENT

In this Appendix, the S matrix for a periodic layer with
nonlocal response, embedded in a local environment, is
evaluated. The geometry is defined in Fig. 7. Two local
layers, labeled as “L1” and“L2,” surround a nonlocal slab
labeled as “NL.” The mode amplitude constants are defined
as C, with the subscript denoting the layer index, and the
superscript the propagation direction, with “+” and “−”
standing for waves propagating in the positive and negative
z directions, respectively. Each vector of mode amplitudes

FIG. 7. (Color online) Schematic showing a nonlocal layer
embedded in a local environment.

C has N elements. The nonlocal layer therefore supports
twice as many modes as the local layers, consistent with
the discussion in Sec. II. For the case where the nonlocal
layer is nonperiodic, the solution of Eq. (2) results in N pure
transverse and N pure longitudinal modes. Then, the mode
amplitude constants can be divided into two groups, CNL,a

and CNL,b, with each of these groups associated with either
longitudinal or transverse modes. When the nonlocal layer is
periodic, no pure longitudinal modes exist in the general case.
For consistency, we keep the division into two groups CNL,a

and CNL,b so that each mode amplitude vector remains with N

elements. However, the division into these two groups is now
arbitrary. To find the mode amplitude vectors, we employ the
S-matrix approach, for which a scattering matrix S relates a
vector of incident mode amplitudes a to a vector of outgoing
mode amplitudes b according to b = Sa. This approach is
considered as numerically stable in the sense that growing
exponential terms are avoided.22 First, the S matrix for the
interfaces are derived and afterwards they are used to derive
the layer S matrix.

The two interface S matrices are defined as⎡
⎢⎣

S
(1)
11 S

(1)
12 S

(1)
13

S
(1)
21 S

(1)
22 S

(1)
23

S
(1)
31 S

(1)
32 S

(1)
33

⎤
⎥⎦

⎡
⎢⎣

P +
L,1C

+
L,1

C−
NL,a

C−
NL,b

⎤
⎥⎦ =

⎡
⎢⎣

C+
NL,a

C+
NL,b

P −
L,1C

−
L,1

⎤
⎥⎦ ,

(B1a)⎡
⎢⎣

S
(2)
11 S

(2)
12 S

(2)
13

S
(2)
21 S

(2)
22 S

(2)
23

S
(2)
31 S

(2)
32 S

(2)
33

⎤
⎥⎦

⎡
⎢⎣

C−
L,2

P +
NL,aC

+
NL,a

P +
NL,bC

+
NL,b

⎤
⎥⎦ =

⎡
⎢⎣

P −
NL,aC

−
NL,a

P −
NL,bC

−
NL,b

C+
L,2

⎤
⎥⎦ .

(B1b)

Here, the phase matrices P ±
L,1 are N × N diagonal matrices

with elements exp(jk0k
(i)±
z,n dL,1), with dL,1 the local layer

thickness as shown in Fig. 7. The forward and backward
propagating modes in layer i have propagation constants
k(i)+
z,n and k(i)−

z,n , respectively. Since k(i)+
z,n = −k(i)−

z,n , these phase
matrices satisfy P +

L,i = (P −
L,i)

−1. For the nonlocal layer the
phase matrices are P ±

NL,x with x = a,b, with the subscripts and
superscripts having their obvious meaning. The phase matrices
appear in Eq. (B1) because the mode amplitudes are defined
to have zero phase at the left boundary of each layer.

Assuming continuity of Ex , Jz, and Ez, we match the
eigenvector matrices of these field quantities at the first
interface:⎡

⎢⎣
E+

x,L,1 E−
x,L,1

J+
z,L,1 J−

z,L,1

E+
z,L,1 E−

z,L,1

⎤
⎥⎦

[
P +

L,1C
+
L,1

P −
L,1C

−
L,1

]

=

⎡
⎢⎣

E+
x,NL,a E+

x,NL,b E−
x,NL,a E−

x,NL,b

J+
z,NL,a J+

z,NL,b J−
z,NL,a J−

z,NL,b

E+
z,NL,a E+

z,NL,b E−
z,NL,a E−

z,NL,b

⎤
⎥⎦

⎡
⎢⎢⎢⎣

C+
NL,a

C+
NL,b

C−
NL,a

C−
NL,b

⎤
⎥⎥⎥⎦ , (B2)

where a “+” or “−” superscript of the eigenvector matrices
represents left and right propagating field quantities, respec-
tively.
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Rearranging terms in Eq. (B2) we obtain⎡
⎢⎣

E+
x,L,1 −E−

x,NL,a −E−
x,NL,b

J+
z,L,1 −J−

z,NL,a −J−
z,NL,b

E+
z,L,1 −E−

z,NL,a −E−
z,NL,b

⎤
⎥⎦

⎡
⎢⎣

P +
L,1C

+
L,1

C−
NL,a

C−
NL,b

⎤
⎥⎦ =

⎡
⎢⎣

E+
x,NL,a E+

x,NL,b −E−
x,L,1

J+
z,NL,a J+

z,NL,b −J−
z,L,1

E+
z,NL,a E+

z,NL,b −E−
z,L,1

⎤
⎥⎦

⎡
⎢⎣

C+
NL,a

C+
NL,b

P −
L,1C

−
L,1

⎤
⎥⎦ . (B3)

Comparing Eq. (B3) with (B1a), it is seen that the first interface S matrix can be expressed by the eigenvector matrices as⎡
⎢⎣

S
(1)
11 S

(1)
12 S

(1)
13

S
(1)
21 S

(1)
22 S

(1)
23

S
(1)
31 S

(1)
32 S

(1)
33

⎤
⎥⎦ =

⎡
⎢⎣

E+
x,NL,a E+

x,NL,b −E−
x,L,1

J+
z,NL,a J+

z,NL,b −J−
z,L,1

E+
z,NL,a E+

z,NL,b −E−
z,L,1

⎤
⎥⎦

−1 ⎡
⎢⎣

E+
x,L,1 −E−

x,NL,a −E−
x,NL,b

J+
z,L,1 −J−

z,NL,a −J−
z,NL,b

E+
z,L,1 −E−

z,NL,a −E−
z,NL,b

⎤
⎥⎦ . (B4a)

Following a similar procedure, the second interface S matrix is⎡
⎢⎣

S
(2)
11 S

(2)
12 S

(2)
13

S
(2)
21 S

(2)
22 S

(2)
23

S
(2)
31 S

(2)
32 S

(2)
33

⎤
⎥⎦ =

⎡
⎢⎣

E−
x,NL,a E−

x,NL,b −E+
x,L,2

J−
z,NL,a J−

z,NL,b −J+
z,L,2

E−
z,NL,a E−

z,NL,b −E+
z,L,2

⎤
⎥⎦

−1 ⎡
⎢⎣

E−
x,L,2 −E+

x,NL,a −E+
x,NL,b

J−
z,L,2 −J+

z,NL,a −J+
z,NL,b

E−
z,L,2 −E+

z,NL,a −E+
z,NL,b

⎤
⎥⎦ . (B4b)

By detaching the phase matrices, Eq. (B1) can be modified to⎡
⎢⎣

I 0 0

0 I 0

0 0 (P −
L,1)−1

⎤
⎥⎦

⎡
⎢⎣

S
(1)
11 S

(1)
12 S

(1)
13

S
(1)
21 S

(1)
22 S

(1)
23

S
(1)
31 S

(1)
32 S

(1)
33

⎤
⎥⎦

⎡
⎢⎣

P +
L,1 0 0

0 I 0

0 0 I

⎤
⎥⎦

⎡
⎢⎣

C+
L,1

C−
NL,a

C−
NL,b

⎤
⎥⎦ =

⎡
⎢⎣

C+
NL,a

C+
NL,b

C−
L,1

⎤
⎥⎦ , (B5a)

⎡
⎢⎣

(P −
NL,a)−1 0 0

0 (P −
NL,b)−1 0

0 0 I

⎤
⎥⎦

⎡
⎢⎣

S
(2)
11 S

(2)
12 S

(2)
13

S
(2)
21 S

(2)
22 S

(2)
23

S
(2)
31 S

(2)
32 S

(2)
33

⎤
⎥⎦

⎡
⎢⎣

I 0 0

0 P +
NL,a 0

0 0 P +
NL,b

⎤
⎥⎦

⎡
⎢⎣

C−
L,2

C+
NL,a

C+
NL,b

⎤
⎥⎦ =

⎡
⎢⎣

C−
NL,a

C−
NL,b

C+
L,2

⎤
⎥⎦ . (B5b)

Performing the matrix multiplications in Eq. (B5) and rearranging terms, we obtain two homogeneous equations:

⎡
⎢⎣

S
(1)
11 P +

L,1 S
(1)
12 S

(1)
13 −I 0 0

S
(1)
21 P +

L,1 S
(1)
22 S

(1)
23 0 −I 0

P +
L,1S

(1)
31 P +

L,1 P +
L,1S

(1)
32 P +

L,1S
(1)
33 0 0 −I

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C+
L,1

C+
NL,a

C+
NL,b

C−
NL,a

C−
NL,b

C−
L,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (B6a)

⎡
⎢⎣

P +
NL,aS

(2)
11 P +

NL,aS
(2)
12 P +

NL,a P +
NL,aS

(2)
13 P +

NL,b −I 0 0

P +
NL,bS

(2)
21 P +

NL,bS
(2)
22 P +

NL,a P +
NL,bS

(2)
23 P +

NL,b 0 −I 0

S
(2)
31 S

(2)
32 P +

NL,a S
(2)
33 P +

NL,b 0 0 −I

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C−
L,2

C+
NL,a

C+
NL,b

C−
NL,a

C−
NL,b

C+
L,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (B6b)

Combining the two equations in (B6), we obtain a system of equations that connect the incident amplitudes (C+
L,1 and C−

L,2) with
the outgoing (C+

L,2 and C−
L,1) and internal amplitudes (C+

NL,a, C+
NL,b, C−

NL,a, and C−
NL,b):

Slayer

[
C+

L,1

C−
L,2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C+
L,2

C−
L,1

C+
NL,a

C+
NL,b

C−
NL,a

C−
NL,b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B7a)

Slayer ≡ A−1B, (B7b)
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A ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 I 0 −S
(1)
12 −S

(1)
13

0 0 0 I −S
(1)
22 −S

(1)
23

0 I 0 0 −P +
L,1S

(1)
32 −P +

L,1S
(1)
33

0 0 −P +
NL,aS

(2)
12 P +

NL,a −P +
NL,aS

(2)
13 P +

NL,b I 0

0 0 −P +
NL,bS

(2)
22 P +

NL,a −P +
NL,bS

(2)
23 P +

NL,b 0 I

I 0 −S
(2)
32 P +

NL,a −S
(2)
33 P +

NL,b 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B7c)

B ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S
(1)
11 P +

L,1 0

S
(1)
21 P +

L,1 0

P +
L,1S

(1)
31 P +

L,1 0

0 P +
NL,aS

(2)
11

0 P +
NL,bS

(2)
21

0 S
(2)
31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B7d)

Slayer is a 6N × 2N matrix, which can be divided into two submatrices according to

Slayer ≡
[

Sexternal

Sinternal

]
, (B8a)

Sexternal ≡
[

Slayer,11 Slayer,12

Slayer,21 Slayer,22

]
, (B8b)

Sinternal ≡

⎡
⎢⎢⎢⎣

Slayer,31 Slayer,32

Slayer,41 Slayer,42

Slayer,51 Slayer,52

Slayer,61 Slayer,62

⎤
⎥⎥⎥⎦ . (B8c)

Equations (B7) and (B8) provide a complete description of all mode amplitudes. Sexternal can be regarded as the ordinary 2N × 2N

S matrix, which couples transverse only modes in the first local layer to transverse only modes in the second local layer. From
Sinternal the internal (i.e., nonlocal) amplitudes C+

NL,a, C+
NL,b, C−

NL,a, and C−
NL,b can be obtained.
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