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Abstract: We study the optical force in a micro ring resonator coupled to a 

bus waveguide, using the coupled mode theory and a numerical Finite 

Element Method. We show that the resonance enhancement of the force is 

diminished by the opposing contributions of the attractive and the repulsive 

forces related to the symmetric and the anti symmetric modes in the 

coupling region. We show that this limiting factor can be removed by 

adding asymmetry to the system, e.g. by modifying one of the waveguides. 

Furthermore, we study for the first time a combined system in which the 

micro ring resonator is coupled to a one dimensional photonic crystal 

waveguide. This modified geometry allows further enhancement of the 

optical force via the combination of optical resonances and slow light 

effect. 
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1. Introduction 

Optical forces (OF) are the subject of extensive research over the last few decades. 

Specifically, in recent years the OF has been explored in the context of nanophotonic 

devices. The advancement in nano fabrication capabilities, providing additional mechanical 

degrees of freedom, promoted the theoretical and the experimental efforts in this field of 

research. A comprehensive review describing the topic of optomechanical device actuation 

through the gradient optical force can be found in [1]. Several papers performed a theoretical 

study of the forces between waveguide (WG) structures in various configurations and 

investigated several potential applications [2–21]. The OF was measured and characterized 

experimentally in numerous WG configurations [22–25]. A recent effort is devoted to the 
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study of OF in photonic resonators, for two major reasons: 1 – The OF is resonantly 

enhanced via the mechanism of electromagnetic (EM) field enhancement at resonance. 2 - 

The narrow spectral line of photonic resonators allows substantial tuning of the optical 

transmission by applying OF. For example, transmission tuning via the enhancement of the 

OF was demonstrated using double ring structures [26–28] and micro disk resonators (MDR) 

[29,30]. Significant enhancement in OF and transmission tuning can be also obtained in 

Photonic crystals (PhC) systems by exploiting the dispersion of the band diagram and the 

slow light effect [31–37]. 

This manuscript begins by studying the opto-mechanical effect in the system of the Micro 

Ring Resonator (MRR). More specifically, we explore the force that acts on a free standing 

bus WG as a result of the circulating light in the resonator. Based on previous works, we use 

the coupled mode theory (CMT) to develop a new model which provides better 

understanding of the OF in the vicinity of the resonance. The model shows that as long as the 

bus WG and the MRR WG are identical, both the attractive (symmetric) and the repulsive 

(anti-symmetric) forces will be present at resonance, and thus the resonant enhancement of 

the OF will be diminished. Following this result, we numerically show that the force 

cancelation can be overcome by modifying one of the WGs, such that the relative phase 

between the two WGs at resonance can be controlled. Furthermore, we consider a novel 

configuration allowing further enhancement of the OF by the coupling of an MRR to a bus 

WG composed of a 1-D PhC. This modified geometry provides OF enhancement of about 35. 

The paper is organized as follows: in section 2 we develop the analytical model for 

calculating the OF and present numerical simulations which validate the model and extend it 

to the a-symmetric case. In addition, we calculate the tuning of the transmission spectrum 

taking into account the mutual influence between the OF and the mechanical deflection of the 

free standing WG. In section 3 we study the effect of adding a periodic perturbation to the 

bus WG and show further enhancement of the OF as a result of the slow light effect. Section 

4 concludes the paper. 

2. The OF in the system of MRR coupled to a standard free standing strip WG 

Our goal is to investigate the OF acting on the bus WG which is coupled to an MRR. 

Schematic description of the system is shown in Fig. 1. 

 

Fig. 1. Schematic diagram of the investigated structure. The system consists of an MRR 

coupled to a bus WG. The substrate under the bus WG is etched to create a free standing 

mechanical beam. For simplicity we perform a 2-D analysis but we keep the 3-D picture 

representation for visualization purposes. 

2.1 Analytical approach 

We begin by developing an analytical model based on the CMT approach allowing to 

calculate the OF. For simplicity, we consider a 2-D rather than a 3-D structure. While there 
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are significant differences in the force distribution between the 2-D and the 3-D structure, the 

2-D analysis is sufficient for understanding the basic physics of the analyzed devices. 

Moreover, in some cases in can be used as a good approximation for 3-D structures, as 

briefly discussed towards the end of this manuscript. A schematic diagram showing our 

model is presented in Fig. 2a. To simplify the problem we consider a symmetric coupling 

region having its mirror symmetry in the middle of the coupling region, as shown in Fig. 2b. 

The system is excited by an EM wave of time-dependency i t
e
ω , and all the WGs are assumed 

to support a single mode. 

 

Fig. 2. Schematics of the 2-d system. (a) The notations of the EM fields in the bus WG and in 

the MRR as well as the phase accumulation in the MRR are shown. (b) The coupling region is 

sketched together with the two supermodes. 

The time-averaged OF acting on the bus WG along the x-axis is calculated via Maxwell's 

stress tensor (MST) [38]. For our structure, it is given by (for Transverse electric –TE 

polarization) [5,8]: 

 
2 2 2

0 0

1
[ ( )]

4
x y x zF E H Hε µ= ⋅ − + −  (1) 

We assume a coupling region in which the gap between the two WGs is constant. As a 

result, the geometry maintains its mirror symmetry which allows the decomposition of the 

incident EM field into symmetric (S) and anti-symmetric (A) modes. These are the 

eigenmodes of the coupling region. 

Following previous work [10] one can express the incident field at the coupling region by 

 L Rψ = +  (2) 

Where, ψ  stands for the magnetic or electric field component, while L and R are the incident 

fields at each of the bus WGs. Generally, L and R can be arbitrarily chosen. However, in the 

case of an MRR, R is replaced by 'R w R= ⋅  where R is identical to L both in its amplitude 

and its phase and w  is the complex ratio between the field in the MRR and the incident field. 

For our structure, one can use CMT [39], to obtain: 

 
sin( )

1 cos( )

i

i

i e D
w

e D

θ

θ

α κ
α κ

−

−

− ⋅ ⋅
=

− ⋅ ⋅
 (3) 

Where, α andθ  are the field amplitude fraction remaining after a roundtrip in the ring and 

the phase accumulated in the resonator roundtrip, respectively. D is the coupling region's 

length, and κ  is the coupling coefficient between the WGs. Therefore, Eq. (2) takes the 

modified form of: 
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 L w Rψ = + ⋅  (4) 

At 0z =  we express the fields in each WG as a superposition of symmetric and anti-

symmetric modes: 

 
L a b S

R c d A

    
=    

    
 (5) 

Where, 

 
* * * *

,a L S dx R S dx c b L A dx R A dx d= ⋅ = ⋅ = = ⋅ = − ⋅ = −∫ ∫ ∫ ∫  (6) 

By substituting Eq. (4), (5) and (6) in Eq. (1), the OF acting on the bus WG can be 

written as: 

 
{ } { }

{ }

2 22 2

2

int

(1 2 ) (1 2 )

2 { (1 2 )}

sym antisym

i z

erference

F a w w F b w w F

ab e w i w Fβ− ⋅∆ ⋅

= + + ℜ ⋅ + + − ℜ ⋅

+ ℜ − + ⋅ℑ ⋅
 (7) 

Here,
sym

F and
antisym

F are the OFs calculated for each of the two supermodes supported by two 

WGs system,
int erference

F is calculated by taking the product of the symmetric and the anti-

symmetric field for every squared field component, 
symmetric antisymmetric

β β β∆ = − is the 

difference between the propagation constants of the two supermodes, and z is the 

propagation length in the coupled region. Clearly, the third term oscillates with the 

propagation coordinate ( z ). For the purpose of calculating the OF acting on the WG we can 

simplify this term by taking its average value. This simplification is justified for large gaps 

between the WGs, where β∆  is relatively small. Moreover, for such a case it was shown 

[10] that the contribution from this beating term is negligible compared to the symmetric and 

anti-symmetric OF terms, because of the small overlap integral of the symmetric and anti-

symmetric modes. 

Figure 3 shows the OF as a function of wavelength as calculated from Eq. (7) for a 

specific 2-D MRR system, together with the MRR power enhancement spectrum. 
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Fig. 3. (a) Power enhancement and OF as a function of wavelength. A 250nm gap is assumed 

between two 400nm slab WGs with 2.446n = . The WGs are coupled along a coupling 

region of 4 mµ . The MRR properties are provided in the numerical section. (b) Zoom in on 

a specific resonance denoted by the rectangle. 

From first glance, the results are surprising- the largest OF is not obtained at resonance, 

where the field enhancement is maximal, but rather at two extreme values, with opposing 

sign, occurring slightly before and after the resonance peak. These extreme values are indeed 

large compared to the force obtained in an equivalent two slabs system. However, the 

enhancement factor is in the order of 2-3, corresponding to the MRR power enhancement at 

these wavelengths which are slightly off resonance. 

This counter-intuitive behavior of the force has been experimentally observed in a disk 

resonator system [30], and the results were explained by a quantum theoretical model. We 

next use our CMT-based model to explain this finding. 

It has been shown [10] that the OF depends dramatically on the relative phase between 

the fields in two adjacent WGs. This relative phase controls the excitation of each of the 

eigenmodes in the system, and consequently the ratio between the attractive and repulsive 

components of the OF. In other words, the OF is not only a function of the fields' amplitudes 

but also a function of their relative phase. 
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We now go back to Eq. (7) and focus on the region of interest near resonance, where the 

amplitude of w tends towards its maximum. As appears from Eq. (3), at resonance one 

obtains ( ) 0wℜ = , meaning that the relative phase between each component of the EM field 

in the bus WG and the MRR is 3 2π . At typical gap separation, each of the coefficients of 

Eq. (6) approach the value of 1 2 , and thus at resonance Eq. (7) can be expressed as: 

 
21

| (1 ) [ ]
4

resonance sym asymF w F F≅ + ⋅ +  (8) 

As was previously shown [4,5,8,23], at large enough separation gaps the symmetric force is 

attractive (negative sign in our conventions) whereas the anti-symmetric force is repulsive 

(positive sign). Thus, although the field enhancement is maximal, the opposing sign of the 

two force components will reduce the total net OF. On the other hand, if the relative phase 

tends towards 0 or π , while the system is still in the vicinity of resonance (in order to have a 

significant field in the MRR), maximal attractive or repulsive force will be obtained, 

respectively. 

2.2 numerical simulations 

While the analytical model supports the physical understanding of the parameters affecting 

the force in the system, it cannot be fully correlated to an actual structure. Therefore, 

numerical simulations are needed for quantitative design and analysis of the forces in the 

MRR system. Moreover, the numerical simulations allow coping with more complex 

structures, e.g. asymmetric structures. These will be shown to play an important role in our 

work. Throughout the paper, the numerical calculations are performed by the finite-element 

approach (COMSOL). We choose the basic strip WG to be made of silicon with cross 

sectional dimensions of 400 300nm nm× width and height respectively. These parameters 

were chosen after rigorous, 3-d MST calculations and are the result of a tradeoff between 

large forces that arise where the mode is not well confined [11] and the mode confinement 

needed for optimal operation of the MRR (e.g. controllable coupling and low bending loss). 

Furthermore, for the same reasons we consider only the less-confined polarization, in which 

the major electric field is polarized along the y-axis (TM- like polarization). In our 2-

dimensional model, based on the Effective Index Method (EIM) [39,40], these parameters 

lead to an effective refractive index of 2.52
eff

n =  for silicon-on-
2

SiO  WG. 

We set the MRR radius to be 5.13R mµ= . We assume a racetrack structure, by adding 

two 2.67 mµ long straight WG sections to the MRR. First, we use the numerical simulation in 

order to validate the results of the analytical model. Indeed, the force obtained with the 

numerical calculation was very similar to that calculated by the analytical model. In Fig. 4 

we present the electric field distribution in the coupling region at resonance and at adjacent 

wavelengths for which the force approaches its extreme values. As was predicted by the 

analytical model, the maximal repulsive (attractive) force is obtained when the relative phase 

between the fields in the WG and the MRR is close toπ  and 0, while at resonance the 3 2π  

phase difference at the beginning of the coupling region reduces the net force. 
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Fig. 4. The electric field distribution in the coupling region of the racetrack MRR is shown. 

Figure (a) [(b)] were calculated at wavelength in which the obtained force is maximal positive 

[negative], where the relative phase between the signals is close to [0]π  . Figure (c) was 

calculated at a resonance wavelength in which the relative phase at the beginning of the 

coupling region is 3 2π  . The phase difference evolves and becomes 2π at the output of 

the coupling region. For visualization purposes we modified the color scale between the 3 

figures. 

In order to maximize the OF, it is desired to operate at resonance, where the power 

enhancement is maximal. At the same time we wish to operate at phase matching condition, 

i.e. to have a relative phase approaching 0 or π , giving rise to the dominancy of either the 

symmetric or the anti-symmetric force term. To do so, we introduce an a-symmetry to the 

structure (by modifying the parameters of one of the WGs). From CMT it can be shown that 

in such a case the relative phase at resonance can deviate from 3 2π , and in some cases it 

can even approach 0 or π . 

The first step towards creating the needed asymmetry is by allowing the bus WG to be in 

a free standing configuration, whereas the MRR is assumed to be positioned on top of a 

2
SiO substrate. This geometry supports the mechanical translation of the bus WG and at the 

same time is preferable for the obtaining of a stable MRR with high Q factor. In this 

configuration, the effective refractive index of the MRR and the bus WG are 2.52 and 2.446 

respectively. However, from numerical calculations we conclude that this slight difference in 

effective indices is not sufficient, and the MRR's effective refractive index should 

be 2.66
eff

n = , i.e. effective index difference of nearly 0.22. This can be achieved e.g. by 

increasing the height of the MRR from 300nm to 325nm. Alternatively, we can choose a 

wider MRR WG. For partial purposes the latter option is preferable because it does not 

require multi etching steps. 

We repeat the numerical simulations with an MRR effective index value of 2.66. The 

obtained power enhancement and force as a function of wavelength in the vicinity of a single 

resonance are presented in Fig. 5, where the force and the power enhancement curves are 
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nearly consolidating, and the force obtains its maximum absolute value around the 

wavelength of resonance, where the power enhancement is maximal. 

 

Fig. 5. The force in an asymmetric MRR system as a function of the wavelength. The 

effective refractive index of the MRR is assumed to be 2.66. The separation gap is 250nm. 

These parameters corresponds to quality factor of 10,000Q ≅ . 

With this improvement we can now investigate the obtained force values and their 

relation to the MRR power enhancement. In Fig. 6 we sketch the force as a function of 

wavelength for numerous separation gaps between the MRR and the bus WG. First, we 

notice the narrowing of the force curve as the gap separation increases. This is expected 

because the coupling between the bus WG and the MRR is decreasing, effectively increasing 

the Q factor of the MRR. The narrow force curve will be used in the next section, where we 

discuss the tunability of the optical system using optical forces. In addition, we notice an 

increase in the force at resonance with the decrease in the gap separation. Here we need to 

take into account two phenomena having opposite effect on the force. On one hand, by 

reducing the separation between two WGs, one expects the force to increase as a result of 

stronger interaction. On the other hand, the resonant enhancement of the force becomes less 

prominent, due to the decrease in Q factor. We now focus on this later effect by comparing 

the force at resonance to the force obtained in a double WG system with the same separation 

gap. The result is shown in the inset of Fig. 6. Indeed, we notice an increase in the force 

enhancement, following the improvement in the Q factor of the MRR. However, this 

enhancement does not follow the power enhancement in the MRR. This feature can be 

explained by the fact that the power is only enhanced in the MRR, but not in the bus WG. 
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Fig. 6. Force as a function of wavelength for different gaps between the bus and the MRR. As 

can be seen, the Q factor grows with the increase of the separation gap. However, the 

magnitude of the force decreases with the increase in separation gap, because of the lower 

overlap between the mode and the WG. The inset shows the maximal force values normalized 

by the force that is obtained in the 2 slabs system for the same gap, as a function of the 

separation gap. 

2.3 The mechanical response 

In order to estimate the coupled opto-mechanical effect, we combine the EM simulations 

together with structural simulations to predict the motion of the bus WG as a result of the OF. 

We assume a separation gap of 250nm, for which the obtained quality factor and maximal 

force are 10,000Q ≅ and 
max

7[ ( )]F nN m Wµ≅ ⋅  respectively (see Fig. 5). We assume the 

section of the air bridged WG, i.e. the free standing beam to be 28 mµ  long. As an example, 

if we decouple the EM and the mechanical simulations, these parameters will result in 

maximal beam deflection of 5.6nm for an incident power of 50mW in the bus WG. 

While the latter value provides an estimate for the strength of the effect, a more rigorous 

analysis which takes into account the mutual effect of the EM fields and the geometry of the 

device is needed. For example, a shift in the device geometry may result in a transition of the 

MRR out of resonance. This in turn will reduce the strength of the EM field in the resonator. 

As a consequence, the beam will tend towards its original geometry, and the process will 

repeat itself. 

In Fig. 7 we show explicitly the combined opto-mechanical effect. We compare between 

low power (1mW) and higher power (25mW) feeding of the device. For the latter, the 

wavelength of maximum power in the MRR is blue shifted by about 1nm primarily due to the 

resonator's effective index's change in the coupling region resulting from the change in 

dimensions. 
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Fig. 7. Tuning the MRR using the optomechanical effect. The power enhancement in the 

resonator near resonance is shown for the suggested device, at two power levels in the WG. 

3. The photonic-crystal-embedded MRR structure 

In the previous sections we demonstrated the enhancement of the OF by the use of an MRR, 

combined with optimal selection of the phase shift between the light propagating in the MRR 

and in the bus WG. However, the force enhancement is still moderate, and consequently its 

effect on the optical signal propagating through the MRR is relatively small. This is because 

the enhancement is limited to the MRR, while the forces are obtained by the combined effect 

of the fields in both the MRR and the bus WG. 

In order to further enhance the OF and increase its effect on the optical signal propagating 

in the structure, we next consider taking advantage of the slow light effect by adding a 

periodic perturbation to the bus WG. Specifically, we aim to operate in the vicinity of the 

band edge of the periodic structure, where the light experiences high group index. 

Simultaneously the parameters are chosen such that we operate at one of the resonances of 

the MRR. 

The idea of utilizing the effect of slow light at the band edge to enhance optical forces has 

been recently utilized for enhancing the force between a free standing 1-D PhC bar and its 

underlying substrate [20]. Here we apply this concept for the first time in combination with 

the MRR structure for enhancing the OF. 

We choose our periodic perturbation to be consisted of air holes that are fully etched into 

the Si WG. For hole diameter of 300 nm and periodicity of 415 nm we found the first band 

edge to be around the telecom wavelength of 1.55 mλ µ= . The group index at each optical 

frequency is calculated from the dispersion diagram using 

 1( )
g

n c
k

ω −∂
= ⋅

∂
 (9) 

The force is expected to increase with the group index enhancement, i.e. the obtained 

group index normalized by the group index of an unperturbed WG (~4 for the Si WG). 

We now validate the relation between the force enhancement and the slow light by 

calculating the OF in a structure of 2 perturbed WGs with respect to a structure of 2 

unperturbed WGs. The double PhC WG structure exhibits a splitting in its dispersion 

diagram, corresponding to the symmetric and the anti-symmetric modes. Fig. 8a shows the 

group index as a function of wavelength for the single PhC WG and the double PhC WG, 
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together with the corresponding mode profiles. Fig. 8b shows the force enhancement 

(relatively to the equivalent unperturbed structure) obtained by MST calculation. 

 

Fig. 8. (a) The group index in the vicinity of the first band edge of the PhC WG as a function 

of wavelength. Two structures are considered as shown in the insets with the electric field 

mode superimposed: A single silicon WG with periodic perturbation of air holes (data can be 

found in the paper) and two coupled silicon WGs with periodic perturbation of holes. (b) The 

force obtained in the periodically perturbed double WG system, normalized by the value 

obtained in the equivalent unperturbed structure. 

As expected, the force is significantly enhanced as the wavelength approaches the band 

edge, and the enhancement factor is close to the enhancement of the group index. The slight 

discrepancy between the group index enhancement and the force enhancement may be 

attributed to variation in mode profile as the wavelength approaches the band edge, as well as 

to numerical inaccuracies in the proximity of the band edge, in particular in estimating the 

group index near the band edge. 

After validating that the periodic perturbation enhances the OF, we simulate the desired 

structure, consisting of a bus WG with 30 holes (with similar parameters as in the previous 
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example) drilled into it. This bus WG is coupled to an MRR, as shown in Fig. 9a. The 

separation gap is 250 nm. This structure gives rise to the coupling between two resonators. 

The first resonator is the 1-D PhC WG, with the interfaces between its Bloch mode and the 

mode of the ridge WG serving as mirrors. Such structures were previously shown to be 

useful in enhancing the quality factor as a result of the high group index towards the band 

edge [41]. The other resonator is the MRR. Clearly, the goal is to match the resonance 

frequencies of these two resonators. To do so, we tune the effective refractive index of the 

MRR. As mentioned previously, this can be achieved e.g. by modifying the height or the 

width of the MRR WG. The transmission spectrum near the band edge is shown in Fig. 9b as 

a function of the wavelength and the MRR refractive index. 

 

Fig. 9. (a) drawing of the simulated structure, consisting of an MRR separated from a bus 

WG. Periodic perturbation of 30 air holes is embedded into the WG. The specific parameters 

are given in the text. (b) Transmission of light emerging from the structure of the MRR and a 

periodically perturbed bus WG as a function of the incident wavelength and the MRR 

refractive index. Red dotted line represents the shift in resonance wavelength as a function of 

variations in the MRR refractive index. 

By observing Fig. 9b we can identify the two resonances. First, we notice a resonance 

close to 1.545 mλ µ=  which is almost not affected by the change in the MRR refractive 

index. Therefore, this resonance is attributed to the 1-D PhC resonator. Additionally, we 

identify another transmission peak, with its resonance wavelength depends linearly on the 

MRR refractive index. This transmission peak is due to the MRR resonance. At the 

intersection point (around 2.46
MRR

n = ) between the two resonances, a resonances splitting is 

obtained. 

Naively, one would expect a maximal OF value to be obtained where the PhC and the 

MRR experience resonance simultaneously. However, our simulations show that the 
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maximal OF value is obtained slightly below the intersection point, at 2.4572
MRR

n = . This 

fact may be understood as a trade-off between the resonances intersection on one hand and 

group index enhancement on the other hand. 

The force and the transmission as a function of the wavelength for this optimal value are 

shown in Fig. 10. As shown we obtain a maximal force of ~ 25[ ( )]nN m Wµ ⋅  implying an 

enhancement of ~35 compared with the 2 unperturbed WGs system. 

 

Fig. 10. The transmission and the force acting on the WG, plotted against the wavelength in 

the region next to the band edge. The refractive index of the MRR WG is assumed to be 

2.4572
MRR

n = . 

The manuscript is focused on 2-D geometry which is different from the full 3-D 

description of actual structures. However, in some cases the 2-D analysis can provide results 

which can be considered as a good approximation of the results that would be obtained in the 

3-D structure by the use of the Effective Index Method (EIM). As an example, we use the 

system of two optical WGs and compared the obtained force in two cases: full 3-dimensional 

system and an approximated system based on the EIM (effective index method). We first 

considered a structure of two Si WGs each having cross sectional dimensions of 

400 300nm nm× , and separated along the horizontal direction. In Fig. 11 the calculated OF 

component is plotted against the separation gap (blue lines) for the out of plane polarization 

(major electric field is polarized along the y-axis). Next, we calculated the OF for the same 

system using the effective index approach, where the y- dimension was eliminated, by 

replacing the air-300 nm silicon-air structure with a single infinite layer having an effective 

refractive index of 2.446. The calculated forces are also plotted in Fig. 11 (red lines). 
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Fig. 11. The OF calculated for two Si (n = 3.45) WGs having identical cross sections 

of 400 300nm nm× . The WGs are excited by an out of plane (TM) polarized, laser source 

at the wavelength of 1.55 mλ µ= . The broken lines (solid lines) represent the force for an 

anti-symmetric (symmetric) mode excitation. The blue lines are the full three dimensional 

calculation, while the red lines refer to a two dimensional system, effectively two slabs of 

400nm with n = 2.446. 

As can be seen, the OFs obtained for the 3-D and the 2-D geometries are very similar, as 

long as the gap between the WGs exceeds approx. 200 nm. As was discussed, our MRR have 

a racetrack shape and thus a relatively large gap is needed in order to keep the coupling 

between the WG and the MRR low. Therefore, we can qualitatively use the 2-D model for 

our calculations. Yet, one should keep in mind that the actual resonance frequencies and the 

quality factors may be slightly different in real (3-D) geometry, and thus the obtained results 

are qualitative. 

4. Conclusions 

We analyzed the OF acting on a bus WG coupled to a MRR, using the CMT and a numerical 

Finite Element Method. Our analytical model shows that the resonance enhancement of the 

force as a result of the MRR's power enhancement is diminished by the opposing 

contributions of the attractive and the repulsive forces related to the symmetric and the anti-

symmetric modes in the coupling region. We suggested that adding asymmetry to the system 

by changing one of the WGs removes this restriction. We further proposed adding periodic 

perturbation to the bus WG in order to create a one dimensional PhC WG, and operating at 

the slow light regime. By this procedure and by careful matching between the MRR and the 

PhC resonances, this modified geometry allows further enhancement of the OF via the 

combination of optical resonances and slow light effect. 
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