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Analytic approach for optimal quantization of
diffractive optical elements

Uriel Levy, Nadav Cohen, and David Mendlovic

One of the most important factors that limit the performance of diffractive optical elements ~DOE’s! is the
depth accuracy of the relief structure. A common procedure for fabricating DOE’s is the binary optics
procedure, in which binary masks are used for the fabrication of a multilevel relief structure. Here an
analytic procedure for calculating the optimal depth levels of DOE’s, the phase bias, and the decision
levels is presented. This approach is based on the minimization of the mean-squared error caused by the
quantization of the continuous profile. As a result of the minimization an optimal value for the etching
depth of each photolithographic mask is determined. The obtained depth values are, in general, differ-
ent from the depth values used by the conventional multilevel approach. Comprehensive mathematical
analysis is given, followed by several computer simulations that demonstrate the advantages of the
proposed procedure. © 1999 Optical Society of America
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1. Introduction

Diffractive optical elements ~DOE’s! play a major role
in various applications such as beam shaping,1 opti-
al data processing,2 optical interconnection,3 and

others. These elements are mainly based on a sur-
face relief pattern and thus possess several advan-
tages. Mainly, these include their high light
efficiency, which is obtained by not using absorptive
material. The above DOE’s are used to describe a
continuous phase profile, which may contain any de-
sired information. DOE’s can be fabricated by use of
several approaches.

A promising approach for the fabrication of contin-
uous phase profiles is direct laser beam writing. Ac-
cording to this approach the substrate is exposed to
an UV laser beam that is focused on the substrate.
Substrate scanning is achieved with an x–y transla-
or, which moves the beam or, alternatively, the sur-
ace itself. At each location the intensity exposure is
ontrolled according to the desired depth. The sub-
trate is usually coated with photoresist,4 although

writing directly onto the substrate is also possible

The authors are with the Faculty of Engineering, Tel Aviv Uni-
versity, 69978 Tel Aviv, Israel. D. Mendlovic’s e-mail address is
mend@eng.tau.ac.il.

Received 24 February 1999; revised manuscript received 26 May
1999.

0003-6935y99y265527-06$15.00y0
© 1999 Optical Society of America
1

~laser ablation!. Another direct writing approach is
electron beam writing.7,8 Direct writing techniques,
although they seem quite promising, suffer from sev-
eral disadvantages, mainly the long fabrication pe-
riod and the complexity of the systems.

Diamond turning is based on a programmable ma-
chining technique, which makes use of a machine and
a cutting tool to obtain continuous phase profiles with
minimal roughness.9 However, this approach is
limited to low numerical apertures ~NA’s! and rota-
tionally symmetric elements. Moreover, the imple-
mentation of this method by use of a glass substrate
is difficult, because glass is a brittle material.

Owing to the above limitations, the common ap-
proach for the fabrication of DOE’s is still by use of a
multilevel phase profile.10 This approach is known
as binary optics. The approach is based on produc-
ing a set of binary masks and performing etching
steps for achieving a phase delay of p ~first mask!,
py2 ~second mask!, py4 ~third mask!, and so on.

sually, no more than four masks are used; therefore
4 5 16 phase levels are achieved. The continuous
hase profile is approximated by the quantized pro-
le with the aid of binary masks. The quantized
hase levels are equally spaced in the @0–2p# span.
Before we discuss optimal etching-depth levels, it is

important to note that, even for the ideal case of an
infinite number of lithographic masks, one cannot
obtain a continuous phase profile, owing to the spa-
tial sampling. For example, the implementation of a
high-NA lens with a low space–bandwidth product
0 September 1999 y Vol. 38, No. 26 y APPLIED OPTICS 5527
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DOE leads to significant phase quantization. In
such cases optimization should be based on proper
design of the lithographic masks. Several ap-
proaches to this type of optimization can be found in
the literature.11–13

In this paper we investigate cases in which phase
quantization is governed by the number of litho-
graphic masks rather than by the space–bandwidth
product. DOE’s for arbitrary beam shaping and low
NA are examples for such a case. Under this as-
sumption the uniform set of etching-depth levels, al-
though commonly used, is optimal only for a limited
set of cases in which the phase probability-density
function is constant ~i.e., equal number of pixels per
each phase region!, such as linear phase ~blazed grat-
ing!. However, if the phase probability-density
function is not constant, e.g., a Fresnel lens, another
set of etching depths may describe more accurately
the continuous phase profile. Controlling the phase
bias may also be helpful, as shown by Hen and Saw-
chuk.14 An iterative approach for obtaining the op-
timal etching-depth levels as well as the phase bias
was presented by Arrizon and Sinzinger.15 The ap-
proach is based on defining a criterion for optimiza-
tion and performs numerical gradient optimization.
Using the above approach, the authors succeeded in
obtaining array generators with higher uniformity.
The approach has several advantages, such as the
ability to define any desired criterion for optimiza-
tion. However, finding an analytic expression ~rath-
er than a numerical one! that defines the optimal
tching-depth levels and the phase bias is crucial,
rom both academic and calculation complexity
oints of view. In addition, the above approach as-
umes that the decision levels lie exactly in the mid-
le of a region defined by two consecutive phase
evels. This assumption, although it seems quite
easonable, is worth checking. Therefore we aim to
nd an analytic expression for the optimal etching-
epth levels.
When trying to find an analytic expression for op-

imal quantization, one usually refers to the well-
nown Max–Lloyd algorithm.16,17 This algorithm

yields the optimal gray levels for quantizing an im-
age. Unfortunately, that algorithm in its known
form is not suitable for quantizing a continuous phase
profile, for to two reasons:

1. The quantization should optimize a phasor
~which is a periodic function with period of 2p! rather
than gray-scale levels.

2. When the binary optics manufacturing proce-
dure is used, the phase values are a function of the
etching-depth levels and therefore cannot be chosen
arbitrarily as are gray-scale levels. As a result,
fewer degrees of freedom exist.

An analytic approach for calculating the optimal
quantization of computer-generated holograms was
suggested by Gallagher.18 This approach is based
on the Max–Lloyd algorithm and finds both ampli-
tude and phase quantization levels. Suitable con-
528 APPLIED OPTICS y Vol. 38, No. 26 y 10 September 1999
straints are used to apply the approach to Lohmann
and Lee computer-generated holograms. However,
the above constraints are not suitable for the optimi-
zation of phase-only DOE’s fabricated with the con-
cept of binary optics.

In the following an approach for calculating the
optimal etching depths analytically is presented.
The proposed approach is based on the Max–Lloyd
optimization. It is applied to the optimization of
phase-only DOE’s fabricated with the binary optics
technique, by the introduction of proper constraints.
Based on knowledge of the phase probability-density
function, the optimal phase profile can be found by
the minimization of the mean-squared error ~MSE!
term. A comprehensive mathematical analysis is
given in Section 2. Computer simulations are given
in Section 3, and in Section 4 we summarize and
conclude the results.

2. Mathematical Analysis

The quantization operation yields some error, which
is known as quantization noise. Our aim is to find a
set of etching-depth levels, d1, . . . , dN ~where N is the
number of desired lithographic masks and d is given
in phase units!, a hard-clipping set C1, . . . , CN11
~where Cj, Cj11 defines the region of allocating a con-
tinuous phase f into a quantized phase fj!, and a
reference quantized phase f1 ~phase bias!, all of

hich minimize the MSE given by

E 5 (
l51

l52N

*
Cl

Cl11

uexp~if! 2 exp~ifl!u2p~f!df, (1)

where p~f! is the probability density of f. We can
find the minimization conditions by differentiating
Eq. ~1! with respect to Cm, dr, and f1 and equating to
zero. As a result the following set of equations is
obtained:

]E
]Cm

5 uexp~iCm! 2 exp~ifm21!u2p~fm!

2 uexp~iCm! 2 exp~ifm!u2p~fm! 5 0, (2)

]E
]dr

5 (
n51

2N
]E
]fn

]fn

]dr
5 (

n51

2N

*
Cn

Cn11

sin~f 2 fn!

3 p~f!
]f

]dr
df 5 0, (3)

]E
]f1

5 *
C1

C2

sin~f 2 f1!p~f!df 5 0, (4)

By applying some simple mathematical manipula-
tions on Eq. ~2!, one gets

Cm 5 ~fm 1 fm21!y2, (5)

which is similar to the results obtained with the
Max–Lloyd algorithm. Before substituting the
above results into Eqs. ~3! and ~4! and obtaining a
olution for the set dr and for f1, one must know the
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Table 1. Optimal Etching Depth Levels for the Fabrication of the
analytic dependence of fn in dr. The general expres-
sion for this dependence is given by

fn 5 f1 1 (
r51

N

dr (
p51

2r21

(
j52N 2 r 1 1

2N 2 r 1 1

dn, j 1 ~ p 2 1!2N 2 r 1 1, (6)

where di, j is the discrete Kronecker delta function,
efined as

di, j 5 H 1 if i 5 j
0 if i Þ j . (7)

The various masks usually conform to the simple
relation

dr . (
j5r11

N

dj, . . . , 1 , r , N 2 1. (8)

or masks that fulfill condition ~8!, Eq. ~6! may be
ormulated more simply as an inner product:

fn 5 f1 1 ~n 2 1!N,2 z ~d1, d2, . . . , dN!t, (9)

where ~n 2 1!N,2 is the N-digit binary vector repre-
entation of n 2 1, z is the inner product, and t is the
ranspose operation.

Although Eq. ~6! is somewhat complicated, it is
asy to obtain the matrix ]fny]dr. As an example,

we discuss the case of N 5 2, i.e., two masks and 22 5
4 phase levels. From Eq. ~6! one obtains

f1 5 f1, f2 5 f1 1 d2, f3 5 f1 1 d1,

f4 5 f1 1 d1 1 d2; (10)

therefore

]fn

]dr
5 3

0 0
0 1
1 0
1 1

4 , (11)

where r is the column index and n is the row index.
Extreme phase levels pose an additional problem.

As can be seen from Eq. ~5!, finding C1 and CN11
involves expressions with f0, fN11, which are not
defined. However, bearing in mind that f is a pha-
sor and thus should be a periodic function with 2p
periodicity, we must define f0 5 fN 2 2p, fN11 5
f1 1 2p. An integral whose boundaries cross 2p
~e.g., an integral with boundaries @1.9p–0.1p#!
should be replaced with two integrals: from the
lower boundary up to 2p and from 0 up to the upper
limit, e.g., from 1.9p to 2p and from 0 to 0.1p,
espectively. Integrals of this type may result ei-
her from fN11 . 2p ~causing boundaries such as

1.9p–2.1p! or from f0 , 0 ~causing boundaries such
s 20.1p–0.1p!.
It is still necessary to obtain an expression for p~f!.

t is convenient to perform this task with a computer,
y means of dividing the phase region @0–2p# into a

large number of discrete partitions, counting the
number of pixels that belong to each partition, and
performing normalization. If, however, the phase
profile is given as an analytic function, it is also pos-
10
sible to find p~f! analytically. Assuming that the
dependence of f in the spatial location x ~which is
distributed uniformly! is given by f~x! 5 f ~x!, it can
be shown that

p~f! 5 const
dx
df

. (12)

Although the constant can be found by normalization,
it can be neglected, owing to the structure of Eqs. ~3!
and ~4! (const@. . .# 5 0).

The next step is substituting Eqs. ~5! and ~6! into
Eqs. ~3! and ~4!. Equation ~3! is a set of N nonlinear
equations; therefore the N 1 1 unknown parameters
@d1, . . . , dN, f1# can be found from the above equa-
tions. Note that, although every equation is a sum
of 2N terms, only half of the phase levels are depen-
dent on dr. Therefore only 2N21 terms remain, which
makes the calculations easier. For the case of a
large number of lithographic masks, ~i.e., large N! the
erm f 2 fn becomes small; therefore the approxi-

mation

sin~f 2 fn! < ~f 2 fn! (13)

is valid. Using the above approximation leads to
simpler equations, which are easier to solve. How-
ever, where large N values are involved, the improve-
ment of the proposed approach becomes less
significant. Thus using the approximation of rela-
tion ~13! might cancel the error reduction, and the
xact solution is preferable.

3. Computer Simulations

To demonstrate the advantages of the presented ap-
proach, several computer simulations were carried
out. The first case that was investigated is the mul-
tilevel Fresnel lens, also known as the zone plate.
We used a weak Fresnel lens with an aperture of 6.3
mm and focal length of 8 m, designed for a wave-
length of 0.632 mm. The suggested algorithm was

sed to find the set ~d1, . . . , dN, f1! for N 5 1, 2, 3.
he obtained results are given in Table 1 ~The con-

inuous, uniform-quantized, and nonuniform-
uantized profiles can bee seen in Fig. 1!. MSE
alues are presented in Table 2. No significant im-
rovement was achieved using with three masks;
herefore these results are not given.

Although the above approach is based on optimi-
ation of the MSE, the evaluation of the quantized
ens performances should be based on an energy cri-
erion. Even though MSE improvement does not
ecessarily lead to efficiency improvement. It is in-

F 5 8 m Fresnel Lens

f1 d1 d2 d3

N 5 1 0.63 2.958
N 5 2 0.181 3.0159 1.4608
N 5 3 0.1 3.0788 1.5237 0.7461
September 1999 y Vol. 38, No. 26 y APPLIED OPTICS 5529
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teresting to examine how the nonuniform quantiza-
tion influences the energy distribution at the focal
plane. We calculated the energy inside the central
lobe of the of the lens and compared that with the
expected values for the uniform-quantized lens19:

hN 5 UsincS 1
2NDU2

. (14)

The results for the first two masks are also given in
Table 2. Significant improvement was obtained
only for the binary lens ~N 5 1!, efficiency of 48.6%
nstead of 40.5%. The cross section of the image at
he focal plane, obtained with the uniform- and the
onuniform-binary-quantized lenses are depicted

n Fig. 2. The obtained MSE values are given in
able 2.
Another case that was investigated is a Fresnel

ens with a focal length of 5 m and an aperture of 6.2
m. The parameters of this lens were chosen such

hat the phase variations are from 0 to 3p. Be-
ause of the periodicity, the phase region 2p–3p is
olded into the 0–p region. Therefore most of the
hase values are concentrated in this region, and it

Fig. 1. Continuous ~solid curve!, uniform-binary-quantized
dashed line!, and nonuniform-binary-quantized ~curve with aster-

isks! lens profiles.

Table 2. Obtained MSE and Efficie

Nonuniform
MSE

Uniform
MSE

Nonun
Efficie

~%

N 5 1 0.68 0.71 48.
N 5 2 0.195 0.199 82.

Table 3. Optimal Etching Depth Levels for the Fabrication of the
F 5 5 m Fresnel Lens

f1 d1 d2 d3

N 5 1 0.660 2.832
N 5 2 0.231 3.014 1.524
N 5 3 0.315 3.105 1.515 0.766
530 APPLIED OPTICS y Vol. 38, No. 26 y 10 September 1999
eems that nonuniform quantization may be quite
elpful. The suggested algorithm was used to find
he set ~d1, . . . , dN, f1! for N 5 1, 2, 3. The
btained results are given in Table 3 ~the continu-
us, uniform-quantized, and nonuniform-quantized
rofiles can be seen in Fig. 3!. MSE values are
resented in Table 4. As expected, MSE improve-
ent is more significant compared with the 8-m

ens, although the efficiency improvement is less
mpressive.

To emphasize the capabilities of the proposed ap-
roach, a phase-only filter that reconstructs the letter

Fig. 2. Image cross section at the focal plane, obtained with the
uniform- ~dashed curve! and the nonuniform- ~solid curve! binary-
quantized lenses.

Fig. 3. Continuous ~solid curve!, uniform-binary-quantized
~dashed line!, and nonuniform-binary-quantized ~curve with aster-
isks! lens ~F 5 5 m! profiles.

alues for the F 5 8 m Fresnel Lens

Uniform
Efficiency

~%!
MSE Improv.

~%!

Efficiency
Improv.

~%!

40.5 4.4 20
81 2.6 2
iform
ncy
!

6
7



Table 4. Obtained MSE and Efficiency Values for the F 5 5 m Fresnel Lens
L was designed ~with the Gerchberg–Saxton algo-
rithm20!. The probability-density function, which
can be seen in Fig. 4, was calculated. The obtained
values for f1, d1, . . . , dN are given in Table 5. The
obtained MSE values are given in Table 6. The con-
tinuous, uniform-quantized, and nonuniform-
quantized profiles can be seen in Fig. 5.

As can be seen, significant improvement is ob-
tained for the binary DOE, whereas the improvement
decreases with the increase of N. Nevertheless,
even a 2–3% improvement cannot be underestimated,
and sometimes it can make a significant difference,
especially since no additional fabrication effort is
needed.

Fig. 4. Probability-density function for the L DOE.

Nonuniform
MSE

Uniform
MSE

Non
Effi

N 5 1 0.684 0.721
N 5 2 0.192 0.198
N 5 3 0.0496 0.0511

Table 5. Optimal Etching Depth Levels for the Fabrication of the L DOE

f1 d1 d2 d3

N 5 1 1.574 2.939
N 5 2 0.410 3.086 1.538
N 5 3 0.930 3.145 1.563 0.785

Table 6. Obtained MSE Values for the L DOE

Nonuniform MSE Uniform MSE Improv. ~%!

N 5 1 0.6759 0.7674 13.54
N 5 2 0.1914 0.1978 3.34
N 5 3 0.0500 0.0513 2.60
10
4. Conclusions

A novel, to our knowledge, method that enables an-
alytical calculation of the optimal etching-depth lev-
els, the phase bias, and the decision levels has been
presented. These etching-depth levels, combined
with appropriate masks, can be used for the fabrica-
tion of multilevel DOE’s. It was shown that the de-
cision levels lie exactly between two consecutive
phase values. It was also shown that the error
caused by the quantization could be reduced with the
suggested approach. Three different DOE’s were
tested: two Fresnel lenses ~F 5 8 m and F 5 5 m!
and a phase-only filter that reconstructs the letter L.
The quantization error was significantly reduced for
the first two etching levels of all the three DOE’s,
whereas for the case of three masks error reduction
can be noticed on the Fresnel lens with a focal length
of 5 m and on the L filter. In general, the approach
is useful especially for binary elements but may also
be helpful for multilevel elements.
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