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Abstract

This thesis is devoted to the investigation of the optical force in a micro ring
resonator. The research consists of an analytical model based on the coupled mode
theory as well as on numerical calculations based on the finite element method. Our
model shows that the resonance enhancement of the force is diminished by the
opposing contributions of the attractive and the repulsive forces related to the
symmetric and the anti symmetric modes in the coupling region. We show that this
limiting factor can be removed by adding asymmetry to the system, e.g. by modifying
one of the waveguides. In addition, we study the combination of a micro ring
resonator coupled to a one dimensional photonic crystal waveguide. This modified
geometry allows further enhancement of the optical force via the combination of
optical resonances and slow light effect.
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1. Introduction

This chapter will present the scientific discipline in which the thesis deals with.
Specifically, a short review on the scientific achievements in optomechanical devices,
using the gradient optical force will be given. After these two necessary backgrounds,

the motivation for the research described in the thesis will be given.

1.1. Nano-photonics

21st-century society requires new optical science and technology to meet the
measurement, fabrication, control, and function-requirements on the scale of the
microelectronic chips, which are several tens of nanometers. This requirement is in
view of the well known fact that conventional optical science and technology cannot
overcome the diffraction limit of light waves. The scientific field which is aimed to

give the answer is nano-photonics.

Nano-photonics deals with the interaction of light and matter, where the typical
dimensions of the structures are in the order of or smaller than the optical wavelength.
The behavior of the light in this case is rich and unexpected, and can be treated with
both the classical description of the light via Maxwell's theory and the quantum field
theory for the light and the matter's features. This scientific field is young and
developing since the nanofabrication capabilities (which are generally imported from
the massive micro-electronics world), are only now allowing exploring this subject. In
addition, the theoretical research is also developing due to the vast improvement in
computation power which enables solving complex problems numerically in a way

that was not possible in the past.

1.2.  Optomechanical devices

As Maxwell showed in his classical theory from 1873, the electromagnetic (EM)

radiation field carries momentum. Over the years, a lot of work has been done
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regarding the momentum transfer between light and matter. The invention of the
Laser had an enormous impact on this research due to the laser's large amount of

photons per beam area as well as the beam coherence and its small diverging angle.

Specifically, in the recent years the so-called Gradient Optical Force (GOF) has
been explored in the context of nano-photonic devices. The advancement in nano-
fabrication capabilities, providing additional mechanical degrees of freedom,
promoted the theoretical and experimental efforts in this field of research. This is a
result of two reasons: 1- The force becomes dominant when the optical modes shrink
to the nanometer dimensions. 2- The objects feeling the force are small enough to
experience significant movement. A comprehensive review describing the topic of

optomechanical device actuation through the gradient optical force can be found in

[1].

Several papers performed a theoretical study of the forces between waveguide
(WG) structures in various configurations and investigated several potential
applications [2-21]. Perhaps the most basic work amongst these is [4]. This paper
presented the idea of bonding between two rectangular strip WGs when they are free
to move (see Figure 1.1), and calculated the power that is needed to cause certain
deflections of the WGs. Another interesting work is presented in [7], where two
vertically separated ring resonators are suggested as a device for creating

optomechanical potential wells.

Figure 1.1: schematic of suspended section of two coupled WGs. The picture is taken
from ref. [4]
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The GOF was measured and characterized experimentally in numerous WG
configurations, including single WG coupled to a substrate and Mach-Zender
interferometers [22-25].

A recent effort is devoted to the study of the GOF in photonic resonators, for
two major reasons: 1 — The GOF is resonantly enhanced via the mechanism of EM
field enhancement at resonance. 2 — The narrow spectral line of photonic resonators
allows substantial tuning of the optical transmission by applying GOF. For example,
transmission tuning via the enhancement of the GOF was demonstrated using double
ring structures [26-28] and micro disk resonators [29-30].

Significant enhancement in the GOF and transmission tuning can be also
obtained in Photonic Crystals (PhC) systems by exploiting the dispersion of the band
diagram and the slow light effect [31-37].

1.3. Goal of the research

This thesis studies the opto-mechanical effect in the system of the Micro Ring
Resonator (MRR). More specifically, we explore the force that acts on a free standing
bus WG as a result of the circulating light in the resonator. Schematic picture of the

investigated structure is given in Figure 1.2

Figure 1.2: Schematic diagram of the investigated structure. The system consists of
an MRR coupled to a bus WG. The substrate under the bus WG is etched to create a free
standing mechanical beam. For simplicity we assumed a silicon-on-insulator (SOI)
structure. However, the analysis is not restricted to this specific material platform.
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Based on previous works, we use the Coupled Mode Theory (CMT) to develop
a new model which provides better understanding of the GOF in the vicinity of the
resonance. The model shows that as long as the bus WG and the MRR WG are
identical, both the attractive (symmetric) and the repulsive (anti-symmetric) forces
will be present at resonance, and thus the resonant enhancement of the GOF will be
diminished. Based on this result, we numerically show that the force cancelation can
be overcome by modifying one of the WGs, such that the relative phase between the
two WGs at resonance can be controlled. Furthermore, we consider a novel
configuration allowing further enhancement of the GOF by the coupling of an MRR
to a bus WG composed of a 1-D PhC.

The thesis is organized as follows: in chapter 2 we introduce few essential
theoretical backgrounds. These include the basics of the optical force and the ways for
calculating it, the concept of the MRR, and a brief outline of the PhC and slow light
phenomenon. Chapter 3 is devoted to an analytical general treatment of the GOF in
the MRR via a CMT. In chapter 4 we turn to the numerical simulations of specific
geometries. First, we present the simulations and assumptions which set the numerical
frame. Secondly, we discuss our simulations in different cases, which approve the
analytical model and extend it in order to get better results. The last part of this
chapter is devoted to the multipart simulations which combine the mechanical and the
EM degrees of freedom. These simulations predict the behavior of the actual device.
Chapter 5 introduces the idea of combining 1d-PhC WG and the MRR to further
increase the GOF. The chapter begins with examination of the connection between the
GOF and the slow light effect. Chapter 6 concludes the thesis.
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2. Theoretical background

This chapter presents the theory of three "building blocks" of the thesis- the optical
force, the MRR and the PhC.

2.1. The optical force

In the following we introduce the basics of the optical force, and more specifically the

GOF, and present few ways of calculating it.

2.1.1 Nature of the optical force

As was previously mentioned, the EM radiation field carries momentum within it.
Whenever a physical body interacts with the EM field, this momentum is translated to
an EM force acting on the body. One can see it as a generalization of the basic
Lorentz force for the single charge in the EM field. The name "optical force" is used
when the EM field is excited in the optical regime, obviously.

It is common [1] to distinguish between two major categories- scattering force
and gradient force. While the first one, known also as radiation pressure, is the
momentum that the photons transfer to the body when impinging on it, i.e. this is an
axial force (directed along the radiation propagation direction), the gradient force is
directed perpendicular to the radiation propagation direction. As an intuitive and
incomplete explanation for its physical nature, one can use the concepts of laser
trapping: The dipoles inside the dielectric body feel different force spatially, since
there is a variation of the EM field in space (see Figure 2.1). By that, the body will be
attracted to the spatial spot with the maximal field gradient.
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F ]
Figure 2.1: a dielectric object in a spatially varying electric field experiences total
force.

Referring to the practical question of calculating the force, two extreme cases
can be treated easily: 1- If the body experiencing the force is much larger than the
optical wavelength the problem can be solved using the ray optics method (by
considerations of reflectance and transmission). 2— If the body is much smaller than
the wavelength it can be treated as a dipole in an EM field. In the intermediate cases,
few methods can be applied. In the following we will present two of them.

2.1.2 The Maxwell Stress Tensor (MST) method:

The MST method is a general method of calculating the force acting on an arbitrary
object in an EM field, based on Maxwell's equations. The method does not distinguish
between different forces (i.e. radiation pressure, gradient, absorption, scattering), and
the specific force is categorized according to the situation. For example, if the
examined object has an infinitely extended planar interface and the field is a
monochromatic plane wave, the result will be the classical radiation pressure. On the
other hand, an MST calculation for the case of a single dipole in an EM field
generates the gradient and the scattering forces, known in the laser trapping. For our
geometry the obtained force is naturally of a gradient nature. In the following we will

briefly review this method, and more detailed treatment can be found elsewhere [38].

We take Lorentz law for a particle with charge g and velocity v:
(2.1) F=gqlE+#xB]
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Where E, B are the electric field and the magnetic induction, and p,J are the
charge and current distributions, respectively. Plugging in the Maxwell equations and
doing some algebra leads to the following equation for the force F exerted on a body

inside a volume V:
(22) F=¢ [ J[E(V-E)—Ex (VxE)+c?B(V-B)
e — — d - -
—c?Bx (VX B)]dV —— [, & (E x B)dV .
Here, ¢ stands for the vacuum velocity of light. After identifying the second
JExH _[§ _ 3

integrand as proportional to the Pointing vector ( = = = Prie1q, "Abraham

c? cz

density™) and doing some algebra to establish the equation as a continuity equation,

we can state:

= d = = —
(23) F+ Epfield = 9Sszﬁ Taﬁ ‘g da .
Where we define the Maxwell Stress Tensor (MST):

(24) ﬁfaﬁ = SO[EO{E[? + CZBaBB — %(E . E + C2§ . E)Saﬁ] =

1 1 SOExEy + HOHxHy
I—ESO(EXZ —By* — E;*) + s uo(Hy” — Hy* — H,*) L L
I €0ExEy + ptoHyH, zfo(Ey —E’—E*)+ gﬂo(Hy - H,* = H,%)
| eELE, + toH, H, £0Ey E, + HoH, H,

EOEsz + .UOHtz
oEyE, + poHyH,

1 1 '
550(522 -E’—-E*)+ EMO(HZZ - H,? - H?)
(The magnetic induction was converted to magnetic field).

Thus, for a chosen volume, the mechanical force plus the temporal change in the
field momentum are equal to a surface integral of the normal components of

momentum "flow", which is expressed by the MST integration.

In other words, one component of the MST, TQB , Is the & component force (per

area) acting on the surface perpendicular to B. Therefore, the recipe to calculate a
specific force component acting on a body in the presence of an EM field is: 1 -
calculating first the MST according to the fields. 2 - Integrating the 3 relevant MST
components on the 3 corresponding surfaces. 3- Adding them up.
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It is crucial to mention that the fields in the calculation are not the excitation
fields but rather the self consistent solutions of the problem. It means that these fields

include both the excitation field as well as the scattering fields.

Let us also remind that if the fields are oscillating harmonically, one can use

time averaging over one period, which results in:

25) (R =4 3p(Tap(P 1)) - figda .

2.1.3 The method of virtual displacement

Other way of dealing with the optical force is somewhat more elegant, and it is similar
to the general method of virtual work or virtual displacement. Here we will present

two approaches using this principal.

As was already mentioned, ref. [4] discussed the basic structure of two
rectangular WG, separated in the horizontal direction by a gap of width p. The GOF
was calculated in the following way:

The energy associated with an eigenmode having a frequency w and a wave

vector k is U= Nhw. N stands for the number of photons and h is the Planck

constant. An adiabatic change in the separation Ap , shifts the eigenmode frequency

by Aw, provided that we keep the momentum Kk to be constant. From energy

conservation we can conclude:

= _W_ _dWhw),  _ _1do)
26) F=-r=-——hk=—g5k U

This simple formula was shown in the mentioned paper to give identical results
to the MST method, and in some cases it requires much less computational effort than
the MST.

As others easily showed [9], one can use the relation w = % to get different

eff
formulation of the same equation:

— 1 dnerry
(2.7) F—neff " lw - U .
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Here, n.¢, is the obtained effective refractive index of the optical WG. This
latter result is slightly friendlier than equation (2.6) since the relation n.¢(p) is an

gasy one to extract.

The work described in [14] has extended this method. This manuscript has
shown that given a certain system's response in terms of the phase shift that an input
signal is experiencing while interacting with the system, ¢(q,w) (where q is a
canonical degree of freedom), the optical force can be computed via the following

formula:
(2.8) cmp-h-%‘;"")b.

Here, & is the photon flux in the system. The analysis is assuming loss-less and
reflection-less system having a single input and single output (although the
researchers claim that the method can be expanded to more complex structures). The
previous results referring to the double WG system are easily derived from this

equation, while more complex systems also can be investigated using this method.

2.1.4 Method of calculation in our work:

In our work we choose to work with the more classical MST method by computing

the total EM field. This is due to two reasons:

1- In a numerical frame as we are going to use it is easier to set the geometry
and then to scan over the wavelength (and doing this procedure for few selected gaps)
rather than scanning over the geometrical parameters for a selected wavelength.

2— Moreover, for the mechanical-EM combination it is necessary to give a
fixed value of the force at a given situation (i.e. given geometry, and given incident
power and wavelength), which is possible in the MST method but not in the virtual
displacement method that requires calculations of other geometries to give the force

for a particular geometry.
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2.2. The micro ring resonator

The micro ring resonator (MRR) is a basic element in photonics. Its applications
include for example all-optical switching, electro-optical switching, wavelength
conversion, filtering, sensing, and reconfigurable optical delay lines. It consists of a
WG in a closed loop (which is essentially the optical resonator) coupled to one or
more input/output ("bus™) WGs. In our work we will deal with the one bus
configuration. The principle of operation is based on constructive interference of the

optical signal in the ring.

To give a short theoretical description of the MRR operation, we follow a basic

treatment given in [39]. Referring to Figure 2.2, one can generally state:

Figure 2.2: schematic picture of the MRR. The input signal, indicated as a,, is coupled
to the MRR WG, indicated as number 2. The coupling region, together with the coupling
coefficients, is indicated by the square. The picture is taken from ref. [39].

bl _ t K] [a1
(2.9) [bz] - [—K* t*] [az]
Here, the a's and b's are the modes' complex amplitudes. The assumptions are

that no losses occur in the coupling area and a single unidirectional mode of the WGs

is excited. Both of the assumptions apply in our case.

The coupling coefficients (which are complex, i.e. include phase and amplitude
information: t = |t|e!®) are general at this point (although one optional specific

description of the coupling will be described later) and they are related through:
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(2.10) |t]2+ k)2 =1
For the closed loop we can write:
(211) az = ae_iebz

In other words, the signal changes its amplitude and its phase while propagating
in the ring. The case of lossless ring, o = 1, describes an all pass filter, a device that
only modifies the signal’'s phase. We are dealing with the case of a. < 1, (but generally
close to unity) due to losses in the ring: bending, scattering and mismatches between
straight and bent modes.

As for the phase,
2n
(212) 0 = negr-—- L = 0%, L, negr).

L is the geometrical length of the ring (from b, to a,), A is the vacuum
wavelength of the signal and n.¢ is an effective refractive index of the resonator's
WG. For simplicity, the model assumes that this part of the resonator is not affected

by the coupling area.

Let us assign the value 1 for the input amplitude a,, since we deal with the ratio
of the other signals to it, and solve for equations (2.9, 2.11). After few algebraic steps,

we obtain:

t—ae-i0 i6

—ak*e”
—_— Oy = .
1—t*ae=10 ' 72 T {_trqe-if

(2.13) b, =

Thus, the intensity transmission and enhancement in the ring:

_ 2 a?+|t|?-2alt| cos(6—¢)
(2.14) T = 1b|" = 1+a2|t|2-2alt| cos(6-)’

a?(1-|t|?
Enhancement = |a,|? = ¢ ) .
1+a?|t|2-2alt]| cos(0—¢)

Equations (2.14) are considered as the main equations of the MRR. One can see that
the transmission obtains a minimum at resonance, i.e. (6 — ¢)|,, = m - 2m (m € Z).

This feature of the transmission picture makes the MRR useful for filtering, sensing or
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modulation. The power enhancement in the ring obtains a maximum at resonance, and
can reach few hundreds if a and |t| are close to unity. In the specific case of a = |t],
often called “critical coupling™, transmission approaches zero at resonance. We work

usually in the case of a slightly larger than |t|, known as over coupling.

Few general resonators' characteristics can be obtained, if we plot the
transmission against (6 — ¢): The full width at half maximum [FWHM], is:

2(1-altl)

(2.15) A==

The normalized Free Spectral Range (FSR) is obviously 2w and thus the

finesse is:

_ FSR _ 1T/ alt|
(2.16) F = A = ea

Eventually, the Q factor for the m™ resonance is

(217) Q — (e_d))lvm _ mF _ m'ﬂ\/m

A T (A-alth)

We end this section by providing a CMT formula [40] for calculating specific
coupling constants. We emphasize that it is a simplified model. For example, in this
approach we assume straight WGs in the coupling region. More precise treatment
requires taking into account the bending of the ring's WG, as can be found in the

relevant literature.

The model uses the separate WGs modes as the Eigen states of the physical
problem and assumes the coupling between them to be a small perturbation. An
important parameter is the coupling constant, derived from the overlap integral of the

modes, which will be marked by é. If we define the difference between the two
propagation constants to be § = @ a parameter g = /8% + é2 and the coupling

region length to be D, it can be shown that equation (2.9) gets the form:
(2.18) b, = {[cos(qD) + i%sin(qD)] a; — i%sin(qD) az} e~ i8D

d .
b, = {—i%sin(qD) a; + [cos(qD) - iasin(qD)] az} eldd
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2.3. Short introduction to photonic crystals

A Photonic Crystal (PhC) is a structure which is periodic in its dielectric constant.
The PhC can be treated as if the coherent reflections "slow down" the light, and in
some cases stop it totally from propagate. This latter case occurs in certain
wavelengths or energies that known as "bandgap” or "stop band". This behavior
indicates on the resemblance of the PhC to the quantum description of electronic
wave function in solid state, where the periodic electrostatic potential influence on the
electron's propagation in the same way.

Here we will give short theoretical background of the PhC way of operation,
with an emphasis on the slow light concept. We will restrict ourselves to the 1-d case

which is the geometry that is studied throughout the thesis.

In a homogeneous medium, i.e. where the dielectric constant ¢ is constant
spatially, the plane EM wave follows a harmonic dependency (for non-dispersive

cases):
(2.19) E(r,t)=Ege ¥,

The group velocity connects between the wave's spatial and temporal

frequencies and is given by:

(2.20) v=32_C
dk n

Here, n is the medium refractive index which is a direct function of the
dielectric constant. One convenient way of presenting a specific mode's velocity is by
the use of the dispersion diagram. This is a diagram showing the function w(k),
which in the homogenous case is nothing but straight lines with a slope that is a
function of the medium dielectric constant €. Such a typical line is shown in Figure
2.3 (red, dashed lines).

However, when a periodic perturbation in ¢ is generated, i.e. e(r) = e(r + d),

the solution can be shown to have the form:

(221) E(r’t) = um‘k(r)e—i(kl‘—(ut).
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Now, u,,,(r) is a periodic function with the same periodicity d as the dielectric

function. The solutions, known as the "Bloch modes", can be plotted in a dispersion
diagram, where it is sufficient to plot the region of |k|£% (known as the first

Brillouin zone) due to the structure's symmetry. A typical dispersion curve is shown
in Figure 2.3.
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Figure 2.3: A typical dispersion diagram. Plotted is a dispersion diagram for the case
of a multilayer film consists of alternating layers of Silicon and air, with width of d/2
each. The dashed lines are the light lines for the case of homogenous bulk with an
averaged refractive index. The green area represents the stop band. The picture was
simulated by Mr. Boris Desiatov from the nano-opto group, and appears here with his
kind permission.

One can easily notice that stop bands can appear. In the scope of this thesis we
focus on the region near the band edge, where the light can still propagate along the
structure, but the slope of the dispersion line gets very close to zero. In other words,
the light experiences the physical effect of slow light, where the group velocity tends
to zero (while the group index, which is the ratio between the light vacuum velocity to

the group velocity of the wave, tends to infinity).
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3. Analytical approach

We begin by developing an analytical model based on a CMT approach to calculate
the GOF. For simplicity, we consider a 2-dimensional rather than a 3-dimensional
structure. The validity of this assumption will be discussed later, in the numerical
chapter. Nevertheless, in its essence the analytical model is completely general and

few small changes should be made to transform it to a 3-d model.

A schematic diagram showing our model is presented in Figure 3.1(a). To
simplify the problem we consider a symmetric coupling region having its mirror
symmetry in the middle of the coupling region, as shown in Figure 3.1(b). The system
is excited by an EM wave of time-dependency e‘“¢, and all the WGs are assumed to

support a single mode.

a) b)

_l.;_. { 5:.- mmetric

Figure 3.1: Schematics of the 2-d system. (a) The notations of the EM fields in the bus
WG and in the MRR as well as the phase accumulation in the MRR are shown. (b) The
coupling region is sketched together with the two supermodes.

The time-averaged GOF acting on the bus WG along the x-axis is calculated via
the MST. For our structure and for a given polarization, e.g. the Transverse Electric —
TE (the treatment for the Transverse Magnetic — TM polarization is obviously

equivalent), the complicated definition of equation (2.4) is reduced to [5,8]:
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1
(3.1) FX=Z-[—80\Ey\2+ﬂo(|Hx|2—|Hz|2)]-

This component is actually in units of pressure, i.e. force per area. No
integration of the MST component on the y and z axes is performed since it is
invariant in these two directions: it is infinite along the y axis and it has a translational
symmetry along the propagation direction, i.e. the z axis (as long as we deal only with
the coupling region). We assume a coupling region in which the gap between the two
WGs is kept constant. This geometry maintains its mirror symmetry which allows the
decomposition of the incident EM field into symmetric (S) and anti-symmetric (A)

modes. These are the eigenmodes of the coupling region.

Following previous work [10] one can express the incident field at the coupling

region by
32 w=L+R,

Where V¥ stands for the magnetic or electric field component, while L and R are
the incident fields at each of the bus WGs. Generally, L and R can be arbitrarily
chosen. However, in the case of an MRR, R is replaced by R'=w-R where R is
identical to L both in its amplitude and its phase and wis the complex ratio between

the field in the MRR and the incident field (in fact it is a, of Equation (2.13)). Using

sec. 2.2 we can write:

a3 we —iar-e7sin(x - D)
(33) 1-a-e % cos(x-D)

Here, « and ¢ are the field amplitude fraction remaining after a roundtrip in the
ring and the phase accumulated in the resonator roundtrip, respectively. D is the
coupling region's length, and x is the coupling coefficient between the WGs.

Therefore, equation (3.2) takes the modified form of:
(34) w=L+w-R.

At z =0 we express the fields in each WG as a superposition of symmetric and

anti-symmetric modes:
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Where,

(3.6) a=jL-s*dx=jR-s*dx :c,b:jL.A*dxz_jR.A*dx:_d_

Substituting Equation (3.4), (3.5) and (3.6) in Equation (3.1), the GOF acting on

the bus WG can be written as:

F =a? @+ W + 2R {W}) - Fym +07 @+ W = 2R {W}) - Fangioym
(3.7)

nterference

+2abR{e M (1w +2i- I {w))}-F

Here, Fy, and F,mare the forces calculated for each of the two supermodes
supported by two WGs system, Fierrerence IS Calculated by taking the product of the

symmetric and anti-symmetric field for every squared field component,

AB = Bymmetric — Bantisymmetric 1S the difference between the propagation constants of the two

supermodes, and z is the propagation length in the coupled region. Clearly, the third
term in this equation oscillates with the propagation coordinate ( z ).For the purpose
of calculating the GOF (per unit length) acting on the WG we can simplify this term
by taking its averaged value. This simplification is justified for large gaps between the
WGs, due to two reasons: 1- AS is relatively small, so averaging is legitimate. 2- As
was already shown [10], the contribution from the beating term is negligible
compared to the symmetric and anti-symmetric GOF terms, because of the small

overlap integral of the symmetric and anti-symmetric modes.

Thus, the recipe for calculating the GOF following equation (3.7) is taking the
EM modes of the double WGs system and calculating the corresponding force
components. Afterwards one needs to calculate equations (3.6) using the EM modes
of the single WG. Finally, the parameters of the ring and the coupling region are

introduced.

It is important to emphasize that the qualitative behavior of the force in the
vicinity of resonance arises from the general analytical model. Thus, different
parameters lead all to the same behavior. Figure 3.2 shows the force as a function of
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wavelength as calculated from equation (3.7) for a specific 2-D MRR system, together

with the MRR power enhancement spectrum.
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Figure 2.2: (a) Power enhancement and GOF as a function of wavelength. A 250nm gap
is assumed between two 400nm slab WGs with n=2.446. The WGs are coupled along
a coupling region of 4,.m. The MRR properties are provided in the numerical section.
(b) Zoom in on the region denoted by the rectangle.

From first glance, the results are surprising- the largest GOF is not obtained at
resonance, where the field enhancement is maximal, but rather at two extreme values,
with opposing sign, occurring slightly before and after the resonance peak. These
extreme values are indeed large compared to the force obtained in an equivalent two
slabs system. However, the enhancement factor is in the order of 2-3, corresponding
to the MRR power enhancement at these wavelengths which are slightly off

resonance.
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This counter-intuitive behavior of the force has been experimentally observed in
a disk resonator system [30], and the results were explained by a quantum theoretical

model. We next use our CMT-based model to explain this finding.

It has been shown [10] that the GOF depends dramatically on the relative phase
between the fields in two adjacent WGs. This relative phase controls the excitation of
each of the eigenmodes in the system, and consequently the ratio between the
attractive and repulsive components of the force. In other words, the GOF is not only

a function of the fields' amplitudes but also a function of their relative phase.

We now go back to equation (3.7) and focus on the region of interest near
resonance, where the amplitude of w tends towards its maximum. As appears from

equation (3.3), at resonance one obtains %(w)=0, meaning that the relative phase
between each component of the EM field in the bus WG and the MRR is3z/2. At

typical gap separation, each of the coefficients of equation (3.6) approach the value of

1/2, and thus at resonance equation (3.7) can be expressed as:

1 2
(3-8) F |resonance; Z(l+|W| )'[Fsym + I:asym] .

As was previously shown [4,5,8,23], at large enough separation gaps the symmetric
force is attractive (negative sign in our conventions) whereas the anti-symmetric force
is repulsive (positive sign). Thus, although the field enhancement is maximal, the
opposing sign of the two force components will reduce the total net GOF. On the
other hand, if the relative phase tends towards o orz, while the system is still in the
vicinity of resonance (in order to have a significant field in the MRR), maximal

attractive or repulsive force will be obtained, respectively.
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4, Numerical simulations

While the analytical model supports the physical understanding of the parameters
affecting the force in the system, it cannot be fully correlated to an actual structure.
Therefore, numerical simulations are needed for quantitative design and analysis of
the forces in the MRR system. Moreover, the numerical simulations allow coping
with more complex structures, e.g. asymmetric structures. These will be shown to
play an important role in our work. Throughout the paper, the numerical calculations
are performed by the Finite Element Method (FEM) using COMSOL software. This

chapter is devoted to the EM numerical simulations.

4.1. The system design

For the numerical simulations, we need to determine the exact system's geometry and
the operation conditions. Our guiding lines for choosing the proper system are
achieving the largest possible force values while keeping in mind that fabrication

considerations should be taken into account.

4.1.1 Cross-sectional area simulations

First, we investigate the double rectangular WG system, separated in the horizontal
dimension, as detailed for example in [4]. This structure has translation symmetry in
the propagation direction, so the computation dimensions can be reduced to two-
dimensional calculations on the cross section of the two WGs. Figure 4.1 illustrates

the geometry and the axes used in our work.
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Figure 4.1: schematic drawing of the 2 WG structure. The full-structure picture on the
left has translation symmetry so the calculations on the cross section (shown on the
right), are sufficient. The axes for the geometry are presented as well.

First, we extract the EM eigenmodes of the WGs, and then calculate the force
values (per injected intensity unit) by integrating the relevant MST component on the

4 edges.

As a background, one should be familiar with such a structure. We deal with
(almost) single-mode WGs, i.e. for each polarization a single WG has only one mode.
For the doubled system the symmetry gives rise to mode splitting. We obtain
eventually 4 modes: symmetric and anti-symmetric (referring to the mirror axis
between the two WGs, i.e. X = 0) for each of the two polarizations. Full description
of such a system can be found in [4] or elsewhere. For clarity, We plot here (Figure
4.2) these 4 modes for the case of Silicon (n = 3.45) WGs, with cross sectional
dimensions of 500 x 250 nm? , at the telecom vacuum wavelength of 2 = 1550nm.
For these dimensions, the In-Plane (INP) polarized modes (i.e. dominant electric field
is directed along the x axis) are much more confined than the Out-Of-Plane (OOP)
ones (i.e. dominant electric field is directed along the y axis). When the WG becomes

more squared, this property is weakened.
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Figure 4.2: the 4 modes of the double rectangular WG. The left figures are the
Poynting Vector distribution, while red arrows are superimposed to mark the electric
field's direction and magnitude. On the right figures, the corresponding dominant electric
field distribution is plotted. The modes order is from the most confined mode (top) to the
least one (bottom). For visualization purposes the color scale between the figures is
modified.

We are now at a position to select the parameters. These include the WGs
dimensions and refractive index and the operation signal's wavelength and

polarization.

As for the WG dimensions, [4] operated with relatively small cross sectional
dimension of 310 x 310 nm?2. As we will see, this enlarges the force, but due to

fabrication considerations we prefer to design a device with dimensions that were

|28



previously fabricated in our lab, i.e. 500 x 250 nm?. We examine the main GOF
component (the x component) at these two parameters sets and also at an intermediate
value of 400 x 300 nm?, for constant wavelength and constant material, for the two

available polarizations. The obtained GOF is presented in Figure 4.3 against the

separation gap.
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Figure 4.3: gap dependence of the GOF and the dimensions’ effect. The gap between
the WGs is changed and the force is calculated for 3 different WG dimensions. (a) The
force for the two modes for OOP polarization illumination. (b) The same, for INP
polarization illumination. The region marked in rectangle is zoomed in the inset.

As appears in the figure, the basic behavior of the force is similar at all sizes and
polarizations- the symmetric mode produces negative force, decreasing with the

increase in separation gap. The anti-symmetric mode produces a positive force which
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is reduced with the increase in separation gap. However, for small gaps the anti-
symmetric mode's force changes trend and even its sign and can become even more
attractive than the force of the symmetric mode. These global features are well known
in the literature [4,5,8,23], and their investigation is beyond the scope of our work,
although we can state in general that it has to do with the behavior of the electric field
at the edges. As for our work, we focus on relatively large gaps (above 150 nm) due
to the fact that in the MRR system large gaps are needed for small coupling and
reasonable Q factor.

Referring to the two possible polarizations, it seems that the INP polarization
can give rise to higher force values compared with the OOP polarization. This is true
if we work with the symmetric mode and at very small gaps. However, as we stated,
we need to work in the larger gaps regime, and thus after carefully examining the
force values we concluded that in our case the attractive force is about an order of
magnitude smaller than its correspondent generated by the OOP polarized mode.
Considering that, we will focus on the later (which is also referred as TM-like), as

also [4] and other works have done.

Examining the effect of the WG sizes on the GOF, it is easy to see that
shrinking the structure will lead to better results (although not dramatically). This
feature is expected, and can be explained by the fact that the force is based on the
field change due to the presence of the second WG. As such, the lower mode
confinement results in higher mutual influence between the WGs and the force will be
increased [11]. This also explains why at large enough gaps (where edges effects do
not exist) the more confined modes of the INP polarization generate lower force.
Anyway, since we deal with large gaps, and the differences between different WG
sizes are not enormous, we will limit our discussion to cross sectional dimensions of

400 x 300 nm?, in order to simulate more realistic device.

Figure 4.4 is devoted to examine the frequency influence and the refractive
indices' difference effect. For this latter parameter, we set the WG's core to be Silicon
and check the cladding's index. We fix the separation gap to 200nm and work with the
dimensions and polarization chosen before. We also take into account the dispersion

of Silicon in such a broad wavelength regime.
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Figure 4.4: spectral dependence of the force and cladding influence. The examined
structure consists of two 400 x 300 nm? Si WG, with 200nm separation gap, under
OORP polarization illumination.

Generally, the force grows moderately with wavelength, which has also been
explained [11] by the simple fact of decrease in the level of mode confinement (the
slight decrease at large wavelengths is also explained there). We aim to operate at
telecom wavelength (which is the typical choice for Silicon photonics), where the
relative change in force as a function of wavelength is quite small. In addition, in this
spectral region no dramatic change is observed by changing the cladding from air to

water (n = 1.33), for example.

It is worth mentioning that a lot of works use Si3N4 as the WGs material. This
enables slightly larger forces and much more injected intensity (to obtain significant
effects), but on the other hand the MRR should be much larger to avoid significant
bending losses. For the scope of this thesis, we limit ourselves to the Silicon.

Concluding this part, our basic WG consists of a Silicon core surrounded by air
(in some of the cases it will partly lie on Si0, substrate). Its dimensions are chosen to
be 400 x 300 nm2. Referring to the illumination, we operate at wavelength
around A = 1550nm, and the polarization is OOP (major electric field is directed

along the y-axis).
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4.1.2 Ring resonator parameters

After selecting the basic WGs structure, the ring's design should be considered. The

separation gap between the ring and the bus WG will be discussed later in the thesis.

Taking advantage of the large index ratio between core and cladding in silicon
WGs, which manifests in small bending loss even for small radius, we chose the MRR

radius to be 5.13 um.

Another degree of freedom is the specific ring geometry. Several works were
based on a "racetrack" structure, i.e. a ring with two additional straight WG sections
(see the schematic Figure 1.2). Its main feature is enlarging the coupling area of the
ring and the bus WG. We will use this kind of structure in some cases. Additional
losses are introduced in these structures because of the mode-mismatch between the
straight WG mode and the bent WG mode. The losses that eventually present in a

structure that includes two 2.67umstraight WG sections have been calculated to be

dB
roundtrip

0.0113

Different aspects of the racetrack shape will be discussed afterward.

4.2. The two-dimensional approximation

Before moving to the actual simulations, a major approximation should be done.
Performing FEM calculations on a system of an MRR coupled to a bus WG is
numerically intensive. Therefore, we considered the simplification of our geometry by
the use of the Effective Index Method (EIM) allowing obtaining a 2-D geometry (we
eliminate the height of the structure, i.e. the dimension in which the whole system is a
simple single mode WG). The validity of the method was intensively explored and
discussed, for example in [40,41]. It was also used in an MRR analysis, for example
in [42]. One should keep in mind that the actual resonance frequencies and the quality
factors may be slightly different in real (3-D) geometry. However, we expect the
qualitative behavior and the orders of magnitude to be predicted by the 2-D

approximation.
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Let us explain first the principle of the EIM. For our case of rectangular WGs,
the method is quite simple and works as follows: the dimension to be neglected is
scanned so the WGs considered as slabs, 300nm width, n = 3.45, top cladding of
n = 1 and substrate of n = 1 or n = 1.46 for the case of the air bridged WG or the
standard one, respectively. After setting the polarization to TM (see figure 4.5) and
calculating for the specific wavelength one gets the propagation constant, and
consequently the effective index of this slab's mode. This effective index is to be
taken as the new core index. We now considering a system of "slab™ MRR, 400nm

width excited by TE polarized light.

=,
[
]
try,

_
E
rF 3
300 Neore = Neore 300 Neff
¥

Figure 4.5: the Effective Index Method in the rectangular WG. The rectangular WG
on the left is investigated via applying two consequent slabs treatment: the first one is
using one of the dimensions and the real core's index and produces an effective index.
The second treatment analyses the other dimension using the effective index produced in
the first treatment as the core's index. The polarization of the incident light is constant, so
in the different treatments it will be treated differently.

Specifically, by this method we get n.s = 2.446 for the Silicon-on-air WG, and

ngg = 2.525 for the Silicon-on- Si0, one.

Nevertheless, besides the photonic behavior, the dimension reduction has an
influence on the forces calculation, mainly because of edge effects on the y direction
which do not exist in the 2-D version. Therefore, the legitimacy of the use of the 2-D
approximation needs to be checked. To validate this approach, we use a simplified
system of two optical WGs and compare the obtained force in two cases: full 3-
dimensional system and an approximated system with the EIM (effectively two slabs).

We first consider a structure of two WGs (with the same parameters discussed
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already) which are separated along the horizontal direction. In Figure 4.6 the
calculated GOF component is plotted against the separation gap (blue lines). Next, we
calculate the GOF for the same system using the effective index approach, where the
y- dimension was eliminated, by replacing the air-300 nm silicon-air structure with a
single infinite layer having an effective refractive index of 2.446. The calculated
forces are also plotted in Figure 4.6 (red lines). This latter 2-D treatment is by FEM
propagation picture since this is the frame in which the full simulations are made,

although in this case of 2 slabs an analytical procedure is also available [1,8] , which

gives almost identical results.
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Figure 4.6: The GOF calculated for two Si (n=3.45) WGs having identical cross
sections of 400 x 300 nm?. The WGs are excited by an out of plane (TM) polarized,
laser source at the wavelength of 1 = 1550nm. The broken lines (solid lines) represent
the force for an anti-symmetric (symmetric) mode excitation. The blue lines are the full
three dimensional calculation, while the red lines refer to a two dimensional system,

effectively two slabs of 400nm with n=2.446.

As can be seen, the behavior in small gaps is certainly different for a strip WG
or for a slab, apparently due to the electric contribution to the EM force which is

related to edge effects. Nevertheless, for gaps larger than approx. 150nm we get
almost identical numbers, and the slight difference can be attributed to the difference
in the meshing between the two cases. We conclude that the effective index

approximation is sufficient for our purposes as long as we remain on the large gap
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regime, which is the scenario of this work because of the low-coupling-loss needed in

the MRR, and in particular if operating with racetrack structures.

As a comment, it should be mentioned that by this 2-D approximation the
values of the fields, intensities and forces will be per unit length. Generally we will be
interested in the force obtained as a result of specific intensity injection, so the force
per unit length will be divided by the intensity by unit length and the unit mismatch is
cancelled out. However, converting to real intensity that is launched into the WG
requires normalization. One can show by accurate calculations (which can be also
supported by logical argument) that the procedure for obtaining real intensity value is
multiplying the intensity per unit length by an effective height which is equal to half
of the actual WG height.

4.3. Averaging of the force

Clearly, the force distribution along the bus WG is not constant due to the variation in
the coupling to the MRR throughout the light propagation. However, the standard
notation in the scientific community and also the equations of the mechanical
response of the WG make use of force per unit length (in the propagation direction).
Consequently, the force values in this paper are given in force per unit length, after
averaging along the bus WG, by integrating the force along the WG's length and then
dividing by the integration length. To validate this method we perform the following
procedure. Three different force distributions are simulated, which represent three

cases: 1 - a ring structure and 2 - a racetrack structure (having two additional 2.67um

long straight WG sections) which have the same average value and 3 - a hypothetical
rectangular force distribution which represents our method, meaning constant value
(of the same averaged number) along certain length. These distributions are shown in
Figure 4.7(a). The exact conditions for obtaining these force distribution values, in the
case of a ring resonator (which requires smaller separation gap) and a racetrack

resonator (larger separation gap) are not critical at this point.
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Figure 4.7: Force averaging in the propagation direction. The force density
distribution for two equivalent structures in terms of average force, are presented in (a):
ring and racetrack MRRs (with two different gaps). The averaged rectangular force is

plotted as well. The mechanical response of the 30um air bridge WG is plotted in (b) for
these 3 cases.

Next we simulate the mechanical response of a 30 um-free bus WG as a result
of these force distributions, taking into account the Si elastic properties (as will be
explained in sec. 4.5). The results are shown in Figure 4.7(b). As can be noticed, only
a slight difference (few percentages) is obtained when an averaged force is present.
This fact supports our method of calculation. In other words, as long as displacement
is the parameter of interest, the bus WG feels the force as if acting on its center of
mass regardless of the exact force distribution.

Additionally, these simulations prove that no fundamental difference exists
between a ring and a racetrack structure as long as the net integral of the force is
equal. This is in contrast to our naive assumption that the GOF obtained in a racetrack

structure will generate an enhanced effect due to its larger coupling area. Indeed, for a

|36



specific gap the ring's effective area is smaller but the Q factor is higher, so the total

force's effect remains unchanged.

4.4. The electromagnetic simulations

We first use the numerical simulation in order to validate the results of the analytical
model. Indeed, the force obtained with the numerical calculation is very similar to that
calculated by the analytical model. Two typical plots, amongst lots of simulations, are

presented in Figure 4.8:
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Figure 4.8: Numerical simulations of the GOF and the transmission of light as a
function of the wavelength. (a) The refractive index of both the MRR and the bus WG
is n=2.446, the separation gap is 350nm and the extension of the racetrack is 2.67 um
long. (b) The refractive index of both the MRR and the bus WG is n=2.52, the separation
gap is 150nm and the extension of the racetrack is 1 um.

The numerical simulations allow us to extract additional information compare
with the analytic model. In Figure 4.9 we present the electric field distribution in the
coupling region at resonance and at adjacent wavelengths for which the force
approaches its extreme values. As was predicted by the analytical model, the maximal
repulsive (attractive) force is obtained when the relative phase between the fields in

the WG and the MRR is close to z(0), while at resonance the 3z/2 phase difference at

the beginning of the coupling region reduces the net force.
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Figure 4.9: The electric field distribution in the coupling region of the racetrack
MRR is shown. Figure (a) [(b)] were calculated at wavelength in which the obtained
force is maximal positive [negative], where the relative phase between the signals is
close to z [0]. Figure (c) was calculated at a resonance wavelength in which the relative

phase at the beginning of the coupling region is3z/2 . The phase difference evolves and
becomes /2 at the output of the coupling region. For visualization purposes we
modified the color scale between the 3 figures.

In order to maximize the GOF, it is desired to operate at resonance, where the
power enhancement is maximal. At the same time we wish to operate at phase
matching condition, i.e. to have a relative phase between the bus WG and the MRR
approaching 0 or m, giving rise to the dominancy of either the symmetric or the anti-

symmetric force term.

To do so, we introduce an a-symmetry to the structure (by modifying the
parameters of one of the WGs). We can use the CMT to show that indeed this
procedure generates the desired result. If we take equation (2.18) that introduces
difference between the coupled WGs and plug it into equation (2.13), the coefficient

w becomes of the form:

_i.a.g.sin(qD).ei(aD_e)

41 w= 1—a-[cos(qD)—i%sin(qD)]-ei(‘SD‘e)

|38



We notice that in the case of resonance (6 = 2m - m) the relative phase deviates

generally from 37 /2, and in some cases it can even approach 0 or .

From now on through the thesis we do not use the analytical model developed
in chapter 3, since few of its assumptions do not hold anymore (e.g. the
decomposition to symmetric and anti-symmetric modes, the correctness of equation

(3.6) ). If so, we proceed with the numerical calculations.

The first step towards creating the needed asymmetry is by allowing the bus
WG to be in a free standing configuration, whereas the MRR is assumed to be
positioned on top of a sio, substrate. This geometry supports the required mechanical
translation of the bus WG and at the same time is preferable for the obtaining of a
stable MRR with a high Q factor. In this configuration, the effective refractive index
of the MRR and the bus WG are 2.52 and 2.446 respectively. However, from
numerical calculations we conclude that this slight difference in effective indices is

not sufficient, and the MRR's effective refractive index should beng =266, i.e.

effective index difference of nearly 0.22. This can be achieved e.g. by increasing the
height of the MRR from 300nm to 325nm (based on EIM calculation). Alternatively,
we can choose a wider MRR WG. The latter is preferable from fabrication point of

view.

This calculated n,sr depends up to some extent on the exact shape of the MRR,
and the given number is accurate for a racetrack structure with two 2.67 um long
straight WG sections. Interestingly, we succeed in applying the method only to the
racetrack structures and not to the ring structure. This may be the result of non

sufficient propagation length in the coupling region.

We now repeat the numerical simulations with an MRR effective index value of
2.66. The obtained power enhancement and force as a function of wavelength in the
vicinity of a single resonance are presented in Figure 4.10, where the force and the
power enhancement curves are nearly consolidating, and the force obtains its
maximum absolute value around the wavelength of resonance, where the power

enhancement is maximal.
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Figure 4.10: The force in an asymmetric MRR system against wavelength. The
effective refractive index of the MRR is assumed to be 2.66. The separation gap is
250nm. These parameters corresponds to quality factor of Q = 10,000.

With this improvement we can now investigate the obtained force values and
their relation to the MRR power enhancement. In Figure 4.11 we sketch the force as a
function of wavelength for numerous separation gaps between the MRR and the bus
WG. First, we notice the narrowing of the force curve as the gap separation increases.
This is expected because the coupling between the bus WG and the MRR is
decreasing, effectively increasing the Q factor of the MRR. The narrow force curve
will be used in the next section, where we discuss the tunability of the optical system
using optical forces. In addition, we notice an increase in the force at resonance with
the decrease in the gap separation. Here we need to take into account two phenomena
with opposite effect on the force. On one hand, by reducing the separation between
two WGs, one expects the force to increase as a result of stronger interaction. On the
other hand, the resonant enhancement of the force becomes less prominent, due to the
decrease in Q factor. We now focus on this latter effect by comparing the force at
resonance to the force obtained in a double WG system with the same separation gap.

The result is shown in the inset of Figure 4.11.
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Figure 4.11: Force as a function of wavelength for different gaps between the bus
and the MRR. As can be seen, the Q factor grows with the increase of the separation
gap. However, the magnitude of the force decreases with the increase in separation gap,
because of the lower overlap between the mode and the WG. The inset shows the
maximal force values normalized by the force that is obtained in the 2 slabs system for
the same gap, as a function of the separation gap.

Indeed, we notice an increase in the force enhancement, following the
improvement in the Q factor of the MRR. However, this enhancement is not
following the power enhancement in the MRR. This feature can be explained by the
fact that the optical power is only enhanced in the MRR, but not in the bus WG. The
exact amount of enhancement can be estimated by CMT and it depends generally both
on the MRR enhancement and on the exponential decay of the MRR WG mode.

4.5. Mechanical simulations

In order to estimate the coupled opto-mechanical effect, we combine the EM
simulations together with structural simulations to predict the translation of the bus
WG as a result of the GOF. We assume a separation gap of 250nm (see Figure 4.10),

for which the obtained quality factor and maximal force are Q=10,000and
Frax = 7[NN/(zm-W)] respectively. We assume the section of the air bridged WG, i.e.
the free standing beam to be 28.m long. For the Silicon's elastic parameters we use

known data from the literature. As an example, if we decouple the EM and the
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mechanical simulations (i.e. the GOF for the specific parameters is obtained and then
serves as the data for a mechanical simulation), the parameters will result in maximal
beam deflection of 5.6nm for an incident power of 50mW in the bus WG. Figure 4.12
presents this situation schematically.

Figure 4.12: The deflection of the beam as a result of the GOF. The geometry that
serves for the elastic simulations is shown, where the whole structure is set to be fixed
accept for 28 um long bus WG section which is free to move. The force per unit length
is implemented on a region of about 8 um. The deflection shown in the picture is about
300 times enlarged compared to the actual displacement.

While the latter value provides an estimate for the strength of the effect, a more
rigorous analysis which takes into account the mutual effect of the EM fields and the
geometry of the device is needed. For example, a shift in the device geometry may
result in a transition of the MRR out of resonance. This in turn will reduce the
strength of the EM field in the resonator. As a consequence, the beam will tend
towards its original geometry, and the process will repeat itself.

In Figure 4.13 we show explicitly the combined opto-mechanical effect. We
compare between low (ImW) and higher incident power (25mW) feeding the device.
For the latter, the wavelength of maximum power in the MRR is blue shifted by about
1nm primarily due to the resonator's effective index's change in the coupling region

resulting from the change in its dimensions.
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Figure 4.13: Tuning the MRR using the optomechanical effect. The power
enhancement in the resonator near resonance is shown for the suggested device, at two
power levels in the WG.

As was predicted already in sec. 4.4, the total force enhancement is quite
moderate, and as a direct result the device's tunability is relatively low compared with
novel structures that have been demonstrated theoretically and even experimentally
[1]. Reasonable tunability can be achieved in our system only if we enlarge the GOF
by feeding the WG with higher power. However, there is a limit to the optical power
in the Si WG primarily because of the two-photon absorption process. The example of
50mW given here is not far from this limit. Alternatively, going to smaller separation
gaps will lead to higher GOF values but on the other hand will broaden the
transmission spectrum (lower Q value), and thus the overall tunability will not deviate
significantly from the value reported here.

The Interim conclusion is that the standard MRR cannot be considered as an
efficient optomechanical device. We thus seek for a better solution, as discussed in

the next chapter.
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5. The perturbed MRR

5.1. Introduction

In the previous sections we demonstrated the enhancement of the GOF by the use of
an MRR, combined with optimal selection of the phase shift between the light
propagating in the MRR and in the bus WG. However, the force enhancement is
moderate, and consequently its effect on the optical signal is relatively small. This is
because the enhancement is limited to the MRR, while the forces are obtained by the
combined effect of the fields in both the MRR and the bus WG.

In order to further enhance the GOF and increase its effect on the optical signal
propagating in the structure, we next consider taking advantage of the slow light
effect by adding a periodic perturbation to the bus WG. Specifically, we aim to
operate in the vicinity of the band edge of the periodic structure, where the light
experiences high group index. Simultaneously the parameters are chosen such that we

operate at one of the resonances of the MRR.

The idea of utilizing the effect of slow light at the band edge to enhance optical
forces has been recently utilized for enhancing the force between a free standing 1-D
PhC bar and its underlying substrate [20]. In our work we apply this concept for the
first time in combination with the MRR structure for enhancing the GOF.

We choose our periodic perturbation to be consisted of air holes that are fully
etched into the Si WG. For hole diameter of 300 nm and periodicity of 415 nm we
found the first band edge to be around the telecom wavelength of A = 1.55 um. The

group index at each optical frequency is calculated from the dispersion diagram using
_c. (221
(51) ng =C (ak) .

The force is expected to increase with the group index enhancement, which in
turn corresponds to the obtained group index normalized by the group index of an
unperturbed WG (~4 for the Si WG).
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5.2. The relation between the force and the group index

We now validate the relation between the force enhancement and the slow light by
calculating the GOF in a structure consisting of 2 perturbed WGs with respect to a
structure of 2 unperturbed WGs. The double PhC WG structure exhibits a splitting in
its dispersion diagram, corresponding to the symmetric and the anti-symmetric modes.
Figure 5.1(a) shows the group index as a function of wavelength for the single PhC
WG and the double PhC WG, together with the corresponding mode profiles. Figure
5.1(b) shows the force enhancement in the PhC structure. This is done by calculating
the GOF using the MST and then normalizing it by the GOF in the unperturbed case
of 2 slabs, as was calculated previously, for example in sec. 4.2.
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Figure 5.1: The Photonic-Crystal WG. (a) The group index in the vicinity of the first
band edge is plotted as a function of the wavelength. Two structures are considered as
shown in the insets with the electric field mode superimposed. 1-single silicon WG with
periodic perturbation of air holes (data can be found in the sec. 5.1) and 2- two coupled
silicon WGs with periodic perturbation of holes. (b) The force obtained in the
periodically perturbed double WG system, normalized by the value obtained in the
equivalent unperturbed structure.
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As expected, the force is enhanced dramatically as the wavelength approaches
the band edge, and the enhancement factor is close to the enhancement of the group
index. The slight discrepancy between the group index enhancement and the force
enhancement may be attributed to variation in mode profile as the wavelength
approaches the band edge, as well as to numerical inaccuracies in the proximity of the

band edge, in particular in estimating the group index near the band edge.

5.3. The combined structure of the MRR and the PhC

After validating that the periodic perturbation enhances the GOF, we simulate the
desired structure, consisting of a bus WG with 30 holes (with similar parameters as in
the previous example) drilled into it. This bus WG is coupled to an MRR, as shown in
Figure 5.2(a). The separation gap is 250 nm. This structure gives rise to the coupling
between two resonators. The first resonator is the 1-D PhC WG, with the interfaces
between its Bloch mode and the mode of the ridge WG serving as mirrors. Such
structures were previously shown to be useful in enhancing the quality factor as a
result of the high group index towards the band edge [43]. The other resonator is the
MRR. Clearly, the goal is to match the resonance frequencies of these two resonators.
To do so, we tune the effective refractive index of the MRR. As mentioned
previously, this can be achieved e.g. by modifying the height or the width of the MRR
WG. The transmission spectrum near the band edge is shown in Figure 5.2(b) as a

function of the wavelength and the MRR refractive index.
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Fig. 5.2: The perturbed MRR system. (a) Drawing of the simulated structure,
consisting of an MRR separated from a bus WG. Periodic perturbation of 30 air holes is
embedded into the WG. The specific parameters are given in the text. (b) Transmission
of light emerging from the structure of the MRR and a periodically perturbed bus WG as
a function of the incident wavelength and the MRR refractive index. Red dotted line
represents the shift in resonance wavelength as a function of variations in the MRR
refractive index.

By observing Figure 5.2(b) we can identify the two resonances. First, we notice
a resonance close to 1 = 1.545 um which is almost not affected by the change in the
MRR refractive index. Therefore, this resonance is attributed to the 1-D PhC
resonator. Additionally, we identify another transmission peak, with its resonance
wavelength depends linearly on the MRR refractive index. This transmission peak is
due to the MRR resonance. At the intersection point (around nyrr = 2.46) between

the two resonances, a resonances splitting is obtained.

Naively, one would expect a maximal GOF value to be obtained where the PhC
and the MRR experience resonance simultaneously. However, our simulations show
that the maximal GOF value is obtained slightly below the intersection point, at

nurr = 2.4572. This fact may be understood as a trade-off between the resonances
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intersection on one hand and group index enhancement on the other hand.

The force and the transmission as a function of the wavelength for this optimal
value are shown in Figure 5.3. As shown we obtain a maximal force of ~
25[nN/(um-W)] implying an enhancement of ~ 35 compared with the 2 unperturbed
WGs system with the equivalent parameters. Clearly, this is a significant

enhancement factor which may provide decent tunability of the proposed device.
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Figure 5.3: The transmission and the force acting on the WG are plotted against the
wavelength, in the region next to the band edge. The refractive index of the MRR WG is
assumed to be nyzg =2.4572.

We should mention that a standing wave pattern is observed in the calculated
EM field, probably due to the reflections from the interface between the perturbed and
the non perturbed sections. Moreover, the GOF itself is alternating between positive
and negative values. Yet, as was discussed in sec. 4.3, the mechanical behavior is
barely affected by these changes and the reported force values that correspond to the
average can be considered as a reliable value.

The prediction is that the tuning properties of this hybrid device should be
improved compared to the results obtained in sec. 4.5. This is due to two main
reasons: 1 - The actual force is larger, and 2 - the Q factor is higher, meaning that the

linewidth is smaller and the effect of tuning on the transmission is enhanced.
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6. Conclusions

We analyzed the GOF acting on a bus WG coupled to an MRR, using the CMT and a
numerical FEM. Our analytical model shows that the resonance enhancement of the
force as a result of the MRR's power enhancement is diminished by the opposing
contributions of the attractive and the repulsive forces related to the symmetric and
the anti-symmetric modes in the coupling region. We suggested that adding
asymmetry to the system by changing one of the WGs removes this restriction. By
this procedure, we are able to demonstrate GOF of F.,, =7[nN/(zm-W)] in an MRR

with a reasonable Q factor of 10,000. This value corresponds to force enhancement of
about an order of magnitude. Yet, the obtained GOF and the resultant optomechanical
tunabilty are not utilizing the full power enhancement of the MRR since the field in
the bus WG is not enhanced at all. As an improvement, we proposed adding a
periodic perturbation to the bus WG in order to create a one dimensional PhC WG,
and operating at the slow light regime. By this procedure and by careful matching
between the MRR and the PhC resonances, this modified geometry allows further
enhancement of the GOF (of about 35) via the combination of optical resonances and

slow light effect.

Few future directions can be considered: firstly, the entire treatment is totally
constant in time (up to the optical frequency). A more complete theoretical research
should examine the time evolution of such a system, especially regarding the mutual
relation of the mechanical and the EM effects. Secondly, we did not consider the
thermal aspects of high optical powers (which are required in this kind of a device).
These can add effects such as the thermo-elastic or thermo-optic. Finally, the novel
structure of the MRR coupled to the 1-D PhC should be investigated more intensively

and rigorously to understand the physical behavior of such a device.
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List of abbreviations

EM  Electromagnetic

FEM Finite-Element Method
GOF Gradient Optical Force
INP  In-Plane (polarization)
MRR Micro Ring Resonator
MST Maxwell Stress Tensor
OOP  Out-Of-Plane (polarization)
PhC  Photonic Crystal

TE Transverse Electric

TM  Transverse Magnetic

WG  Waveguide
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