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Introduction

The detour phase method for the design of computer-generated holograms can be modified to achieve
multichannel reconstruction along various diffraction orders. It is shown how a single hologram can be
used to display two patterns of different intensities along two diffraction orders. This is achieved by the
release of any requirement on the phase distributions of these patterns, thus leaving them as free
parameters. Various algorithms are suggested to make possible nonidentical reconstructions along two
different off-axis diffraction orders. The two reconstruction orders can be chosen arbitrarily. The case
of four-channel reconstructions for generating four different images is discussed as well. Computer
simulations and optical experiments were carried out to demonstrate the capabilities of the proposed
approaches. © 1998 Optical Society of America
OCIS codes: 070.2590, 090.1760.

the reconstruction can be obtained in any desired
off-axis diffraction order. Nevertheless, other or-

Computer-generated holography was invented more
than 30 years ago by Brown and Lohmann! and by
Lohmann and Paris.2 The idea relies on using a dig-
ital computer and a plotting device to imitate the in-
terference pattern recorded by conventional
holography. Computer-generated holography allows
any arbitrary synthetic shape to be reconstructed, in
contrast with conventional holography in which only a
physical waveform can be recorded and then recon-
structed.

The proposed encoding methods are based on the
detour phase principle. According to this principle,
the amplitude information and the phase information
are modulated on a carrier grating. For encoding
the amplitude the local width of a grating line is
changed, while the phase information is encoded by
the shift of the fringe position with respect to the
center, as suggested by Brown and Lohmann?! and by
Lohmann and Paris.2 A different approach that was
based on multiple samples per cell rather than on a
localized shift inside the cell was suggested by Lee3
and by Burkhardt.*

A feature common to all the above methods is that
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ders are generated as well. When Fourier plane re-
construction is involved, the 180°-rotated complex
conjugate of the reconstruction appearing in a certain
diffraction order will appear in its symmetrical order
as well.

One of the most widespread applications of
computer-generated holograms is beam shaping.
Shaped beams can be used for a variety of applica-
tions, such as display, material processing, scanning,
optical interconnection, and medicine. For these ap-
plications only the wave intensity is important.
Therefore the phase distribution can be used as a free
parameter to reduce the noise, increase the diffrac-
tion efficiency, and eliminate the speckle problem.5
Alternatively, phase freedom can be used to achieve
two desired patterns of different intensity distribu-
tions at two different planes along the Z axis, as
suggested by Dorsch et al.6 For implementing their
approach a ping-pong algorithm for propagation and
backpropagation between two planes was carried out.
The constraints were the desired intensity in the two
planes, while the phase was used as a free parameter.

In this paper we present a new approach that per-
mits one to obtain, in the same plane z, two patterns
having different intensities along two different orders
by use of a simple binary mask. We show that the
desired intensity patterns can be obtained in any
plane (Fourier or Fresnel) for nonsymmetrical dif-
fraction orders but in only Fresnel planes for sym-
metrical orders. One important advantage of this



approach is that the diffraction efficiency is doubled
compared with the basic detour phase approaches,
since two orders are used rather than one. There-
fore, for an amplitude-only hologram, a greater than
20% diffraction efficiency can be obtained rather than
10%, whereas for a phase-only mask a greater than
80% diffraction efficiency is expected.

The development of the relevant equations leading
to the conventional reconstruction of two complex-
conjugate patterns is reviewed in Section 2. In Sec-
tion 3 the basic approach for achieving entirely
different reconstructions along two symmetrical dif-
fraction orders is described. Section 4 presents a
generalization of Section 3. It provides a description
of the techniques for determining the fidelity of each
reconstruction in those two orders (Subsection 4.A), a
simplified approach for achieving two nonidentical
reconstructions (Subsection 4.B), an algorithm for
achieving nonidentical reconstructions along any two
diffraction orders (Subsection 4.C), and a combina-
tion of the above approaches with a two-dimensional
encoding approach® for achieving four different-
intensity reconstructions in four different diffraction
orders (Subsection 4.D). In Section 5 we discuss the
choice of parameters for implementing the approach.
Computer-simulation results are given in Section 6,
whereas experimental results are demonstrated in
Section 7. Conclusions are given in Section 8.

2. Background

The detour phase approach is based on dividing the
binary mask into an array of cells. Within each cell
an aperture is drawn. A feature common to all de-
tour phase approaches is that the out-of-center lat-
eral shift of the aperture area identified as a(x, y)
inside the cell is limited by

Fmax| _ 1 (1)
Ax| 2’
where Ax is the lateral size of the cell. Since the

reconstruction occurs along diffracted-beam direc-
tions, the local phase delay caused by this lateral
shift is given by

_ 2mxM @)
 Ax
where M is the desired diffraction order. The infor-

mation diffracted toward the symmetrical order —M
is the complex conjugate of the information that ap-
pears in the +M order. The field distribution of the
Mth diffraction order is given by
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Fig. 1. Schematic diagram of the proposed setup for two-channel
image reconstruction.

whereas the field distribution that appears in the
Fourier plane in the —M diffraction order is
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where the asterisks represent complex-conjugate
functions. Therefore the reconstructions appearing
in the +M and the —M diffraction orders at the Fou-
rier plane are complex conjugated as well as 180°
rotated with respect to each other.

3. Reconstruction of Different Intensity Patterns

Starting with the complex-amplitude functions dis-
played at the Fourier plane, H(x, y) and H*(—x, —y),
we now perform free-space propagation (FSP) from the
Fourier plane to a distance Z, away from it (see Fig. 1).
By virtue of the Fresnel approximation one obtains
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Can the two distributions f;(x”, ¥") and f5(x", y") repre-
sent two nonidentical intensity functions? We now
release all restrictions on the displayed phase but de-
mand that the amplitudes of those distributions match
the desired output functions to be reconstructed.

To compute the necessary filter function, one first
has to determine what function H(x, y) can generate
the desired distributions f; and £, [Eqgs. (5) and (6)].
Such a function can be found by use of an iterative
algorithm, if we bear in mind that the amplitude
distributions of f; and f;, are the constraints and their
phase distributions are free parameters with no re-
strictions. The proposed iterative procedure is in
the spirit of the well-known Lesem—Hirsch—Jordan
(L-H—J) algorithm, also known as the Gerchberg—
Saxton algorithm.?” Adapting this algorithm to our
needs requires that the two constraints in the recon-
struction plane both be satisfied by the same function
H(x,y). The fact that H(x, y) can contain amplitude
as well as phase information provides adequate de-
grees of freedom that should be chosen properly by
the iterative procedure. In Fig. 2 a flowchart of the
iterative algorithm is presented.

Many criteria can be used to examine the quality of
the reconstructed images and determine when the
iteration process should be stopped. A popular cri-
terion is the minimum absolute intensity error (MIE),
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W)

|

f(xny") = ARGy ) expfioh (x'y')]

A

Hi(xy) = A" (xy)ex l¢

>

H1 +H,
2

Hnew

——— BFSP — |

defined as
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whereas the intensity is normalized according to
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One is free to choose the number of iterations or the
convergence rate to determine when the process
should be stopped. The result of those iterations is
the function H,(x, y), defined in the Fourier plane.
The filter itself will thus be the inverse Fourier trans-
form of H,(x, v), which will be encoded, as indicated in
Section 2.

4. Generalizations

A. Weighting Average

The algorithm described in Sections 2 and 3 allocated
equal weight to the two complex amplitudes to be
generated. However, one can think of applications
in which one channel is more important than the
other. The task of assigning greater importance to
one channel can be achieved if the two contributions
are weighted differently, so that
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Fig. 2. Block diagram of the proposed algorithm for achieving different reconstructions along two symmetrical diffraction orders. BFSP,

back-FSP.
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where w, and w,, are the weighting coefficients (w; +
w, = 1) and H; and H, are defined in Fig. 3.

If unequal weighting coefficients are used, im-
proved reconstruction is obtained for the high-
priority channel, with reduced performance in the
second, low-priority, channel. By proper selection of
the weighting coefficients almost any desired MIE
ratio can be obtained.

Several images and several weighting coefficients
were tested. Good results can be obtained with a
small number of iterations (fewer than 50). How-
ever, the suggested algorithm is rather complicated.
Therefore other approaches have been considered.

B. Simplified Algorithm

It was indicated in Section 2 that, at the Fourier
plane, one diffraction order is the complex conjugate
and is a 180°-rotated version of its respective sym-
metrical order. However, starting with H*(—x, —y)
and performing a back-FSP from Z = 0 to Z = —Z,,
one obtains
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Fig. 3. Block diagram of the algorithm for reconstructing distributions along nonsymmetric diffraction orders. IFT, inverse Fourier transform.
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We have thus found that the complex function gen-
erated after back-FSP to a distance —Z in one chan-
nel is the complex conjugate and a 180°-rotated
version of the function obtained after FSP to a dis-
tance +Z in the corresponding symmetrical order
beam. One can thus calculate the complex functions
f1 and f, at the =Z planes for only one-diffraction-
order distributions. This conclusion resembles the
approach suggested in Ref. 6 whereby two different
distributions were displayed in two locations along
the Z axis. The difference is that, instead of arbi-
trarily choosing the planes of the reconstruction, we
must choose the planes so as to fulfill the conjugate
relation of equal separation from the Fourier plane.
Thus two different channels are obtained at the +Z
plane (as well as at the —Z plane) along two different
diffraction orders or along a single order at the =Z
locations. After the two desired complex functions
have been calculated, the complex function at the Z =
0 plane can be calculated, according to

H = w1H1 + LUQHQ, (11)

where H, = FSP(f; + Z) and H, = FSP(f,, — Z).
The distribution H can be reconstructed by use of one
of the detour phase encoding methods mentioned in
Section 1 (see, for example, Refs. 1-4).

C. Arbitrary Diffraction Orders

So far only two symmetric diffraction orders have
been analyzed. However, it is also possible to de-
mand generation of two different intensities at any
two diffraction orders along the Fresnel or the Fou-
rier planes. We are no longer limited to the require-
ment that the orders should be along two different
sides of the optical axis (this can be important be-
cause the zero order can be strong compared with the
desired order and can obscure the desired patterns if
left in the field of view). Moreover, wide-angle re-
construction can be obtained because the higher or-
ders possess higher diffraction angles. The main
drawback of using nonsymmetrical high orders is the
relatively low diffraction efficiency of the higher or-
ders. Indeed, the diffraction efficiency of the two
reconstruction images will not be the same (except for
the special case of symmetrical orders).

The approach is based on the fact that the phase
information that propagates along different orders

@ (b)

Fig. 4. Two objects used for computer simulations and experi-
mental tests.
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(a) (b)

Fig. 5. Reconstruction achieved by use of the basic approach (the
algorithm shown in Fig. 2) after 100 iterations (w,; = w, = 0.5).

can be very different, as was indeed identified in Eq.
(2). With Fourier plane reconstruction assumed and
two desired orders (M, and M,) chosen, the two re-
constructed objects are given by

filx", y") = FT{A(x', y")explidb(x', y' ) M ]}, (12)
falx", y") = FT{A(x', y")explidb(x', y') M,]}.  (13)

Therefore two patterns having different intensity dis-
tributions can be obtained. As discussed above, the
two constraints can be achieved if phase freedom is
allowed for the reconstructed images. A flowchart de-
scribing such an iterative process is shown in Fig. 3.
The process can be stopped by the same parame-
ters that were discussed in Section 3. The
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Fig. 6. Center-line horizontal intensity profile of Fig. 5.



weighting-coefficients approach can be used here, as
well, to enhance the reconstruction of one pattern
with respect to the other. Computer simulations as
well as experimental results are provided in Sections
6 and 7.

A practical drawback of requiring reconstructions
along diffracted beams corresponding to higher or-
ders is that the phase accuracy [Eq. (2)] requires
higher-resolution capabilities for filter fabrication.
Indeed, to generate a specific phase shift in the Mth
diffraction order according to the detour phase ap-
proach, one needs to locate the aperture in the filter
with a resolution accuracy M times finer than that for
the first order.

D. Four Separate Intensity-Pattern Reconstructions

So far only two separate intensity-pattern reconstruc-
tions have been discussed. However, one can use two
orthogonal spatial coordinates to expand the currently
proposed algorithm so that four images are
reconstructed—two along the vertical axis and two
along the horizontal one—following the approach de-
scribed in Ref. 8. In that approach two different sets
of diffracted beams are generated along the two axes,
each of them able to be designed along the lines de-
scribed in Section 3 (following the algorithm given in

Fig. 2). After the two functions Hy, i onta @0d Heptical
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Fig.7. MIE factor as a function of the number of iterations for the
images reconstructed in (a) Fig. 5(a) and (b) Fig. 5(b).

C) (b)

Fig. 8. Reconstruction achieved by use of the basic approach after
100 iterations with the weights w; = 0.3 and w, = 0.7.

are obtained in the Fourier plane, a Fourier transform
operation is carried out, and the two new functions are
encoded according to Ref. 8. The combination of the
two approaches leads to four desired patterns of dif-
ferent intensity distributions, located along four differ-
ent directions and two orthogonal axes. However,
each channel suffers from a relatively low light effi-
ciency because of the diffraction in the two dimensions.

5. Parameter Selection

Until now, the FSP distance Z was treated as a free
parameter to be chosen. However, it is critical that
it be chosen appropriately. Values that are too low
do not allow the energy to be reshaped as desired,
whereas values that are too high might cause aliasing
in the computation process.

The minimal distance that makes it possible for the
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Fig. 9. MIE factor as a function of the iteration number for the
images reconstructed in (a) Fig. 8(a) and (b) Fig. 8(b).
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(@) (b)

Fig. 10. Reconstruction achieved by use of the simplified ap-
proach after 100 iterations (w,; = w, = 0.5).

energy to be diffracted into any desired location at the
output plane can be calculated by the angle of the
diffraction caused by the Fourier plane structure,

which is designed with sample intervals of 8x. The
first diffraction-order direction is given by
0 =\/dx, (14)

in which small diffraction angles are involved (parax-
ial approximation); therefore sin(6) ~ tan(6) ~ 6. If
the actual object size is

LX = NSx, (15)

where N is the number of samples, the various dif-
fraction orders will not overlap if

Z=L,/0 = (L)°/\N, (16)
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Fig. 11. Center-line horizontal intensity profiles of (a) Fig. 10(a)
and (b) Fig. 10(b).
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Fig. 12. MIE factor as a function of the number of iterations for
(a) Fig. 10(a) and (b) Fig. 10(b).

under the same assumption of small diffraction an-
gles.

Another consideration that has been observed for
the computer calculations is the validity of using the
fast Fourier transform subroutine for calculating the
FSP. The fast Fourier transform assumes a periodic
structure, and thus neighboring periods may enter
into the sides of the frame (aliasing effect). Thus the

(@) (b)

Fig. 13. Reconstruction achieved by use of the nonsymmetric ap-
proach after 150 iterations (w, = 0.25 and w, = 0.75).
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Fig. 14. MIE factor as a function of the number of iterations for
(a) Fig. 13(a) and (b) Fig. 13(b).

maximum propagation distance is limited. An esti-
mation of this value is given in Ref. 9:

Z<=L,/0=(L,)*/\N. 1

The aliasing effect can be avoided if the size of the
frame is increased, i.e., the two object planes are
padded with zeros surrounding the objects them-
selves. Padding with a factor of F increases the per-
mitted propagation distance by the same factor.

Fig. 15. Optical reconstruction of Fig. 4 achieved by use of the
original approach (w; = w, = 0.5).

Fourth diffraction order

First diffraction order

Fig. 16. Optical experimental reconstruction of Fig. 4 achieved by
use of the nonsymmetric approach.

However, this solution might cause a problem in
cases of limited spatial resolution.

6. Computer Simulations

Several computer simulations were carried out to
demonstrate the capabilities of the proposed ap-
proach. The two objects to be reconstructed sepa-
rately are shown in Fig. 4. The original patterns
were defined by 64 X 64 pixels, but zero padding by a
factor of 2 led to a 128 X 128 pixel size.

The reconstructions of these two objects achieved
by means of the original approach with 50 iterations
(as described in Fig. 3) are given in Fig. 5. The FSP
distance is 1.2 m, and the wavelength is 0.63 pm. A
1 cm X 1 cm filter size was used. Equal weights
were given to both functions. The center-line hori-
zontal intensity profile is shown in Fig. 6. The
MIE’s of the objects as functions of the iteration num-
ber are given in Fig. 7.

The usefulness of the weighting-average approach
is demonstrated in Fig. 8. For the same FSP dis-
tance and wavelength, weighting coefficients of 0.3
and 0.7 for the patterns shown in Figs. 5(a) and 5(b),
respectively, were chosen. The MIE’s for the images
reconstructed in Fig. 8 are given in Fig. 9.

The two images (Fig. 4) were also reconstructed
according to the simplified approach. The parame-
ters were the same as for Fig. 5. In Figs. 10-12 the
reconstruction image, a center-line horizontal inten-
sity profile, and the MIE can be seen. Note that the
MIE for the simplified approach is similar to that
obtained when the basic approach was used.

Nonsymmetric order reconstructions were checked
aswell. The objects to be reconstructed are the cross
and the square shown in Fig. 4. The reconstructions
were designed to be obtained in the first and the
fourth orders. The reconstructions and their MIE’s
are displayed in Figs. 13 and 14, respectively.

Fig. 17. New set of four objects used for the four-channel exper-
iment.
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Fig. 18. Optical experimental reconstruction of Fig. 17 achieved
by use of the four-channel approach.

7. Experimental Results

To test this process experimentally, we produced sev-
eral filters. We encoded the filter function by chang-
ing the vertical dimensions of the aperture area, as
described in Ref. 1. The computer-generated holo-
grams were drawn on a Scitex plotter based on a
laser-scanning device. The spot size of this machine
is approximately 17 pm, with a resolution accuracy of
7 pm. The total hologram field was 13 mm X 13 mm
and was divided into 128 X 128 cells of approximately
100 pm X 100 pm in size. More than 10 amplitude
levels and even more phase levels were available.

The optical setup can be seen in Fig. 1. A He-Ne
laser with a wavelength of 0.632 wm was used. The
results were captured with the aid of a CCD camera.
The optical reconstruction of the objects shown in Fig.
4 achieved by use of the original approach (Fig. 2) are
shown in Fig. 15.

The general-order case was tested as well. The
reconstruction of Fig. 4 can be seen in Fig. 16. The
desired reconstruction is in the first and the fourth
orders. A gradual change between the two objects
can be noticed in the second and third orders.

To achieve four-channel reconstruction, we de-
signed a new set of objects, as shown in Fig. 17. The
encoding procedure was done according to the
method reported in Ref. 8. The reconstruction is
displayed in Fig. 18. Degraded quality was obtained
because of a lack of spatial bandwidth.
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8. Conclusions

A novel, to our knowledge, method that enables the
generation of simultaneously different patterns along
different diffraction orders has been suggested. Two
different intensity patterns in two symmetrical diffrac-
tion orders can be displayed simultaneously by means
of the basic approach presented. Reconstructions
along symmetric diffraction orders can be obtained
only in Fresnel planes and not in the Fourier plane.
In addition, a general approach that makes it possible
to obtain two different-intensity reconstructions along
any two diffraction orders has also been suggested.
Reconstructions along nonsymmetric orders of diffrac-
tion can be obtained in the Fourier domain as well.
Four different intensity patterns can also be obtained
by the application of the proposed method to the two
orthogonal channels. Computer simulations and ex-
perimental results have showed that the reconstruc-
tion of various shapes with high efficiency and low
noise was obtained. Therefore these methods can be
used in various applications, such as optical commu-
nication, material processing, displays, and medical
applications, in which only the intensity of the optical
pattern is of significance.
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