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It was proposed that a flat silver layer could be used to form a subdiffraction-limited image when illuminated
near its surface plasmon resonance frequency [J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)]. In this paper,
we study the possibility of obtaining sub diffraction resolution using a different mechanism, with no surface
plasmons involved. Instead, by taking into account the nonlocal response of a thin silver slab, we show that
longitudinal modes contribute to the formation of a subdiffraction-limited image in a frequency regime above the
plasma frequency. The differences between these two distinct mechanisms are studied and explained.
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I. INTRODUCTION

In 2000, it was suggested that a thin planar metallic slab
can perform as a lens capable of producing an image with
subdiffraction-limited (SDL) resolution [1]. In this seminal
paper, Pendry showed that by using a thin metallic slab, only
few tens of nanometers thick, which is excited with light
near its surface plasmon (SP) resonance frequency, an image
with SDL size can be obtained, due to the high momentum
frequency components of the SP modes that are supported
by the interfaces between the metallic slab and the dielectric
medium surrounding it. This concept of a homogeneous slab
performing as a lens was a variant (perhaps more realistic)
based on previous work of Veselago that showed that ideal
negative index slab behaves as a lens [2]. Pendry also claimed
that the resolution of such an ideal negative index slab is not
limited [1]. It is now common to coin the ideal negative index
slab configuration as a “perfect lens,” while a thin metallic
layer is now defined as a “poor man’s lens.” Both types
of lenses became the subject of debate and controversy [3].
The discussion was further stimulated by the experimental
demonstration of the “poor man’s lens,” obtaining resolution
of the order of ~Ay/10 (Ao being the vacuum wavelength)
[4-6]. Part of the debate regarding the poor man’s lens was
concerned with the fact that a momentum cutoff of the SP
modes is inherent, due to the nonlocal response of the metal
permittivity function [7-10]. In the nonlocal description, the
permittivity function is described by e(w,k); i.e., it is a function
of both the optical frequency w and the propagation constant
k, due to temporal and spatial dispersion, respectively. For
small k vectors, one can neglect spatial dispersion and assume
that e(w,k) ~ e(w). However, for large k vectors, the SP
modes reach a momentum cutoff resulting in a fundamental
resolution limit for perfect imaging. A detailed analysis,
however, showed that the “poor man’s lens” performance is
very similar under both local and nonlocal approximations,
because the ohmic losses inherent to the metal deteriorate
the image even more drastically as compared with nonlocal
effects [11]. Nonlocal effects for metallic slabs are pronounced
when the slab thickness is less than the 10-nm regime. For
these dimensions, it was shown that the absorption spectrum
above the plasma frequency (w)) exhibits oscillations due to
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Fabry-Perot (FP) resonances of longitudinal modes, which
are modes with zero magnetic field, and electric field vector
E parallel to the propagation vector k. Longitudinal modes
satisfy the macroscopic Maxwell’s equations when e(w,k) = 0
[12—14]. For several metals such as alkali metals and silver,
a phenomenological description of ¢(w,K) can be obtained by
employing the linearized hydrodynamic model [15-20]. This
model successfully reproduces the appearance of longitudinal
mode resonances, which were experimentally observed for
thin layered metals [21], and offers a qualitative explanation
for the blue shifting of the localized SP resonance observed in
silver nanoparticles [22-25]. These results cannot be explained
with local models. However, the validity of this model is
challenged to account for quantum-sized effects [26-29].
In general, a full quantum-mechanical calculation is needed
for an accurate account of the nonlocal response. However,
the longitudinal mode resonance effect (described below)
that is in the heart of this paper is fully accounted for
by the hydrodynamic model. In this paper, we propose a
different physical concept for achieving SDL imaging, taking
advantage of the longitudinal modes within a thin metallic
slab that is described by the hydrodynamic model. The SDL
imaging occurs for discrete frequencies satisfying w > w,.
This frequency regime is different from the original proposal
of the “poor man’s lens,” in which the incident illumination
frequency is in the vicinity of the SP resonance frequency
wp/ /2. Furthermore, the underlying physical mechanism of
the two approaches is different. In the original proposal, the
high-k components of the source are reconstructed in the
image by the SP resonance surface modes, which support high
spatial frequency components. In contrast, our approach is
not based on surface modes. Instead, the high-k components
are transferred to the image plane by the longitudinal modes,
which typically have propagation constants more than an
order of magnitude larger than the vacuum propagation
constant ko = 2w /1y. The paper is structured as follows.
In Sec. II we describe the modes inherent to the nonlocal
slab-lens geometry. In Sec. III we present results based on this
formalism. Sec. IV concludes the paper.

II. MODAL ANALYSIS

Our lens geometry consists of a slab infinitely extending
along the x and y coordinates and bound between z = 0 and
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FIG. 1. (Color online) Schematics of a spatially dispersive slab
of thickness d, surrounded by vacuum.

z = d (see schematic in Fig. 1). The image and source planes
are located at z = —(L —d)/2 and z = (L + d)/2, respec-
tively. In our analysis we assume that the slab is surrounded
by vacuum. We consider TM polarization illumination, i.e.,
E = E, X + E.Z, for which plasmonic and longitudinal modes
exist. The permittivity of the slab is described by the
hydrodynamic model. From this model it follows that for
transverse modes (E L k) the permittivity fu?ction follows the

well-known Drude model er(w) =1 — #?WU’ while for the
longitudinal modes (lg || k) the material response is given by
er(wk)=1-— W Here, y is the damping constant,
and B defines the strength of the nonlocal response. The
electric fields of the transverse modes are given by Er =
Er(—k, 1/k.X+Z)explj(kex + k; r2)], and the propagation
constant of the transverse mode satisfies the dispersion relation
k2, = erw?/c* — kI The electric fields of the longitudi-
nal mode is given by Ej = Ep(k./k, X+Z)explj(kyx +
k.. rz)], and its propagation constant is given by kzz’ L=
[w(® + iy) — w}1/B* — k;, which follows directly from the
longitudinal mode dispersion relation ¢ (w,k) = 0. Because
the spatially dispersive slab supports twice the number of
modes a nonspatially dispersive slab does, an additional
boundary condition (ABC) is needed other than the two
conventional conditions of continuity of the transverse fields,
in order to solve for all modal amplitudes [12,14,30,31].
For an air-metal interface the set of boundary conditions we
assume are the continuity of E,, E, and the normal current
J.. Employing these boundary conditions and preserving
the continuity of k,, one obtains the expression for the
complex transmission amplitude 7 [32]. For completeness,
the derivation for the transmission amplitude is presented
in the Appendix.
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III. RESULTS AND INTERPRETATION

We now turn into studying the transmission through an
Ag slab for the following parameters [33]: w, = 9.6 eV, y =
(1/420)w,, B* = (3/5)/v%, and v = 4.63 x 1073¢c. Here
vr and c are the Fermi velocity and the speed of light
in vacuum, respectively. Possible surface roughness of the
layer is not taken into account in our simplified model (see
Ref. [16], Sec. 4D). We continue our study assuming this set of
parameters, although the concepts derived below are general
and support any spatially dispersive material, which can be
described by the hydrodynamic model. In Fig. 2(a) we plot
log(|T|?) as a function of w and k, for the case of SP resonance,
where the frequency w is in the vicinity of w,/ V2, assuming
layer thickness of d =3 nm. Two SP resonances with k,
components below the light line are observed. From previous
studies [3,34-36], it is known that it is the interplay between the
two modes that allows for the reconstruction of an image with
SDL resolution, due to the very high transmission coefficients
of plane waves with large k, (mind the logarithmic scale bar).
In Fig. 2(b) we calculate |T'|*> assuming the same slab thick-
ness; however, we now consider a different frequency interval
(w, < w < 1.5wp). In this frequency range, k,; becomes
predominantly real. Moreover, for the assumed ultrathin slab
dimensions, the longitudinal modes exhibit distinguishable FP
resonances at discrete frequencies satisfying k. yd/m = N,
where N is an odd number (Ref. [14], Sec. 3.2). A detailed
view of one of these FP modes (N = 11) at ~1.31w),, is shown
in Fig. 2(c). At these resonance frequencies, the spectrum
of |T|*> shows transmission peaks, which are nearly uniform
in frequency over a large range of k, values. Therefore, the
transmission spectrum at one of these resonant frequencies
seems to be more appealing for reconstruction of an SDL
image (which typically contains a large span of k, values) as
compared to the SP resonance case, which is more dispersive
in nature, as shown in Fig. 2(a). On the other hand, the
overall transmission magnitude of these longitudinal modes
is lower as compared to the SP modes [note that Fig. 2(a) is
in logarithmic scale while Fig. 2(b) is not!]. In addition to the
FP transmission peaks, which are evident for large values of
ky, we also notice in Fig. 2(b) the existence of a region with
nearly uniform transmission for low values of k., which are
above the light cone. In this region the transmission is ~1,
besides discrete dips in transmission corresponding to the FP
modes. The FP modes exist mathematically for @ > w,,, but
since Im(k; ;) grows with w, the resonance effect diminishes
with the frequency. We next turn into a further comparison
between the two approaches, with the goal of identifying the
inherent properties and advantages of each approach.

To perfectly image a line source, one needs both the
transmission magnitude and the transmission phase to be
constant with k, (Ref. [37], Sec. 2.2.1). In Fig. 2(d) we plot the
normalized phase of transmission arg(7")/m as a function of &,
for several frequencies near 1.31w),, to estimate how uniform is
the phase for different spatial frequencies. In Fig. 2(e) we plot
the magnitude of the E, in the slab for a specific FP resonance
of the longitudinal modes (v = 1.31w, and k; = 6w, /c). In
Fig. 2(f) we plot the dependence of the real and imaginary
part of k, ;, as a function of k,, for w = 1.31w,,. It is seen
that the variation in k_ ;, is negligible (~0.1% in its real value
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FIG. 2. (Color online) (a) log(|T|?) as function of @ and k, in the vicinity of wp/ﬁ (plasmonic resonance regime) and d = 3 nm. (b) |T|?
as function of @ and k, for w, < @ < 1.5w, (longitudinal mode FP regime) and d = 3 nm. (c) Detailed view of the FP resonance with N = 11
near w = 1.31w,. (d) The argument of the complex slab transmission coefficient 7 in units of 7, calculated for several frequencies near the
N = 11 FP resonance. (e) Distribution of |E_|? in the slab (green background), calculated for d = 3 nm, w = 1.31w,, and k, = 6w, /c. ()
Real (blue line) and imaginary (green line) parts of k. ; as function of k., calculated for = 1.31w,.

and ~1% in its imaginary value). This is primarily due to its
large value, which is the key reason for the FP transmission
resonances shown in Fig. 2(b) being nearly flat with k.

To estimate the imaging capabilities of the lens, we define
two point spread functions (PSF), by calculating the transmis-
sion function at the image plane obtained by summation of an
infinite number of plane waves according to:

PSFg (x,0) = /OO —(kyo/ k)T (ky,w) explj(L — d)k;o
0

+ jkexldk, + / (ko k)T ks s0)
0

x explj(L — d)ko — jkex]dky, ey

o0
PSFEZ(x,a))=/ T (ky,w) exp
0

o0
UL = dYksy + jhox]dks — / T, )
0
x expLi(L — dkeo — jkox1dks. @

Here, PSFg and PSFg correspond to the PSF of the E,
and E, electric field components, respectively. The vacuum
propagation constant k. is defined by k% = w?/c* —ki.
Equations (1) and (2) are defined for the case of E, polarized
illumination. Following these definitions, we also define the

total PSF in the image plane as:
PSF; = [PSFy, | + |PSFg. | 3)

In Fig. 3 the normalized transmission magnitude
|PSF7|?/|max(PSF7)|> in the image plane is plotted for
several imaging distances (L — d). The legend shows the
normalization factor |[max(PSF7)|? for each imaging distance.
Figures 3(a) and 3(b) show the results obtained for the lon-
gitudinal mode FP resonance with N = 11 (w = 1.31w),) and
N =5 (w = 1.0681w,), respectively. Figure 3(c) is calculated
for w = 0.7071w,, corresponding to the plasmonic resonance.
For the case where the source is positioned at the surface
of the slab (L —d =0, red line) the longitudinal mode FP
mechanism results in an ultranarrow FWHM of less than 2 nm,
for both FP resonances. However, when the imaging distance
increases, the FWHM increases and substantial broadening of
the PSFr is observed. We note that the PSFs of the two FP
resonances [Figs. 3(a) and 3(b)] are relatively similar. Once
again, this is the outcome of the relatively flat dispersion
curves of the FP modes. In contrast, the plasmonic resonance
[Fig. 3(c)] behaves very differently. One may observe that
the PSF7 is narrower when the source is slightly away of
the surface (L —d =3 and 6 nm, green and blue lines,
respectively, which have PSF FWHM of ~6 nm) compared
with the case where the source is located on the surface
(L —d =0). The question arises, why for the plasmonic
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FIG. 3. (Color online) Normalized PSFr(x) calculated by Eq. (3), as a function of the transverse coordinate for several imaging distances,
assuming slab thickness of d = 3 nm. The imaging distance L — d and the normalization factor are shown in the legend. (a) w = 1.31w,,. (b)
® = 1.0681w,. The insets show a magnification of the PSF in the center. (¢) v = 0.7071w,.

resonance case, the PSF narrows with increasing imaging
distance, while for the longitudinal mode case, the PSF always
broadens with the increase in imaging distance. The underlying
reason is revealed from the transmission spectrum, calculated
for several imaging distances. In Figs. 4(a) and 4(b), we plot
the transmission magnitude as a function of k, of the N = 11
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FP resonance at w = 1.31lw, for L—d=0and L —d =6
nm. It is seen that for k, components larger than the vacuum
light line (i.e., k, > 1.31w,/c), we obtain a rapid decay of
the transmission for a distance of 6 nm, compared with the
L —d = 0 case. This observation explains the broader PSF
for the latter case [Fig. 3(a), blue versus red curve].
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FIG. 4. (Color online) Transmission magnitude as a function of k. (a) w = 1.31w, and L —d = 0. (b) w = 1.31lw, and L —d = 6 nm.
(©)w=0.707lw, and L —d = 0. (d) ® = 0.7071w, and L —d = 6 nm.
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FIG. 5. (Color online) Normalized PSFr(x) calculated by Eq. (3), as a function of the transverse coordinate for several imaging distances.
The imaging distance L — d and the normalization factor are shown in the legend. The slab thickness is d = 5 nm. (a) @ = 1.217w,,. The inset

shows a magnification of the PSF in the center. (b) ® = 0.7071w,,.

The transmission spectrum is also useful for explaining the
PSF results of the plasmonic resonance. In Figs. 4(c) and 4(d),
it is seen that for L —d = 6 nm the transmission spectrum
is more flat as compared with the L — d = 0 case [mind that
Fig. 4(c) is in logarithmic scale]. Therefore, the PSF becomes
narrower [see Fig. 3(c), blue versus red line].

The relatively large imaginary component of k, ; sets a
practical limitation on the slab thickness, preventing the use
of slabs thicker than ~10 nm. Indeed, this thickness is known
to be the critical dimension for observing nonlocal effects in
Ag [38]. By increasing d beyond 3 nm, the PSF becomes
wider, and the transmission magnitude reduces. This is shown
in Fig. 5 presenting the calculated PSF7 for d = 5 nm and two
frequencies, w = 1.217w),, (corresponding to the FP resonance
with N = 15)and w = 0.7071w,,. The FWHM of PSFr is now
~6 nm for the longitudinal FP resonance case with L — d = 0,
which is about three times larger than the FWHM obtained for
d = 3 nm. For the plasmonic resonance case, the increase of
the layer thickness has a more moderate effect. For the case
shown in Fig. 3(c), with L —d = 6 nm, the FWHM is 8 nm,
while for the case shown in Fig. 5(b) with L — d = 6 nm, the
FWHM is found to increase only slightly, to ~10 nm.

Finally, we consider the possibility of using a slab made
of potassium (K) rather than Ag. We assume the following
parameters for K [33]: w, =3.72 eV, y = (1/200)w,,, and
vr = 2.86 x 1073¢. Because the plasma frequency of K is
lower than that of Ag and is in the soft UV range, this
metal might be more appealing for practical demonstrations
of the SDL imaging effect in the UV, e.g., for lithography
applications. In Figs. 6(a) and 6(b) we show the PSF for
the N =3 (0w = 1.062w,) and N =9 (o = 1.4915w,) FP
resonances, calculated for a K layer thickness of d = 3 nm. In
Fig. 6(c) we show the PSF for the plasmonic resonance case
(w =0.7071w,). Because of the higher ohmic losses of this
metal, the PSF in all three cases is evidently wider as compared
to the Ag case. Yet, it may still be a more practical choice from
the technological point of view [21].

IV. CONCLUSION

In conclusion, we have analyzed the scenario of SDL
imaging based on longitudinal modes excited in a spatially
dispersive metallic slab above the metal plasma frequency.
Our results show that in this regime, for frequencies satisfying
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FIG. 6. (Color online) Normalized PSFr(x) calculated by Eq. (3), as a function of the transverse coordinate for several imaging distances,
calculated for a potassium (K) layer with d = 3 nm. The imaging distance L — d and the normalization factor are shown in the legend. (a)
o =1.062w, (N = 3). (b) w = 1.4915w, (N =9). (c) w = 0.7071w,, (plasmonic resonance).
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k. pd/m = N (N is an odd number) a transmission spectrum
nearly flat with k, is obtained, resulting in an ultranarrow
PSF for the case of full contact (L — d = 0). This PSF is
significantly more narrow than the one obtained with the
conventional plasmonic based “poor man’s lens” operated near
wp/ V2. However, when L — d is larger than a few nanometers,
the situation is inverted and the plasmonic “poor man’s lens”
becomes a much better choice as it provides much narrower
PSF. Another interesting difference is related to the wavelength
of choice. With our proposed approach, the frequency of
operation can be tuned (either by changing the layer thickness
or by choosing a higher-order FP resonance), while for the SP
resonance case the operation frequency is fixed in the vicinity
of ~w,/ V2. We believe that the proposed concept could have
several useful applications for fields such as nanolithography,
sensing, and microscopy, to name a few.
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APPENDIX: CALCULATION OF THE TRANSMISSION
AMPLITUDE FOR A SPATIALLY DISPERSIVE SLAB

For completeness, we derive here the expression for the
transmission amplitude for the case of a spatially dispersive
slab surrounded by local media. Similar derivations are
available for the slab case [11,14,32] and the more general
periodic case [38]. The slab geometry and the field amplitudes
are depicted in Fig. 7. The incident and reflected amplitudes
are denoted by Ey and E,, respectively. In the slab, we define
two transverse mode amplitudes, £ and E3, propagating and
counterpropagating, respectively, and two longitudinal mode
amplitudes, E, and E4. The transmitted mode amplitude is E,.
To derive the complex transmission amplitude 7 = E,/E),

z=0 X
|
z

|
EO
—

— E,

—E,

Et

-—E, L

E spatially
r dispersive slab
B —
d

FIG. 7. (Color online) Schematic showing the field components
of the various modes for the scenario of a spatially dispersive slab
surrounded by local media.
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we match all fields according to the assumed ABC. For this
geometry, there are three types of incidence of the various
modes:

(1) Transverse mode incident from a spatially nondisper-
sive medium onto a spatially dispersive medium;

(2) Transverse mode incident from a spatially dispersive
medium onto a spatially nondispersive medium;

(3) Longitudinal mode incident from a spatially dispersive
medium onto a spatially nondispersive medium.
Employing the ABC, the transmission and reflection coeffi-
cients for these three incidence types can be derived:

8Tkz() - kz,T + (8T - l)k,%/kz,L

R, = , Ala
N etk thor —(er — DRk, Y
2k,
T = > , (Alb)
erko + kv — (67 — Dki/k. 1
2k -1
T, = 20(eT ) . ’ (Alc)
erko + ko r — (67 — Dki/k; 1
2k —1
Ro = D (Al
STkzo + kz,T - (8T - l)kx/kz,L
k — Dk3/k, . — erk
R, = o1+ (er — Dki/k; 1 28T 0 (Ale)
erko+k.r — (e — Dki/k.
2k
T = I (AlD
erko +kor — (67 — Dki/k; 1
k — Dk3/k k
Ry — _Ker + (er — Dki/ k-1 +28T 0 (Alg)
erko+k,r — (e — DkZ/ k.
2k /k
Ry = A ————ONTS
erko+ kv — (67 — Dki/k; 1
2erk?/k
T = erky/ ket (Ali)

Cerkeo + ko — (7 — DK2 k.

For these nine coefficients, R and T are for reflection
and transmission, respectively. The subscripts [ and ¢ are
for longitudinal and transverse modes, respectively, and
the subscripts 1, 2, and 3 correspond to each of the
three incidence types, respectively. For example, R;3 stands
for the reflection coefficient of a transverse mode due
to a longitudinal mode incident from a spatially disper-
sive medium onto air. We define six additional auxiliary
transmission and reijection coefficients, lgased on those de-
ﬁ~ned in Egs. (Al): Tj, =Tn exp(j®r), T3 = Ti3 exp(ijL),
Ri2 = R exp(j2®7), Riz = Ri3exp(j[Pr + PLD), Rp =
Rpexp(j[®@r + @L]), and Rj3 = Rj3exp(j2®.). Here, &7 =
k. rd and @ = k, ; d are the phases accumulated by the trans-
verse and longitudinal modes, respectively, when transversing
the slab. With these definitions, we write a system of equation
describing the mode amplitudes:

[0 0 0 T, T 0 RiTET T[E

0 0 0O Ry Rz 0 T,||E E,

0 R, Rs 0 0 0 O E;| = | E;

0 R/z RB 0 0 0 0 E4 E4

0 7, T3 0 0 0 0 E, E,

o 0 0 0 0 0 1]LE] LEo]
(A2)
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The solution of the mode amplitudes are obtained by solvin, - [T T, - [T T:16
Fo. (A2) p y g E, = Ry B+ Ty Eo+ Ris no + Th Ey. (A3d)
q- (A2 af —ys af —ys8
- [ThB+ T, - [ Tho + T8
o _[TB+Tur], A3 E = T,Z[M}EHT,{“—”}EO, (A3e)
[ I R (A3a) af —ysé ap —ys
g — | IeTuB+ Tolny + TnTna + TsTnd | A3
Tho+T46 re B —ys 0- (A3f)
Ey = | ———— | Eo, (A3b) ap =Y
oaff —yé

Here we define a = (1 — RaRiy — Ri3Rp), B =(1—
.| T; T, .| Ty 1,6 RipRis — Ri3Rp;3), y = (RoRi3 + Ri3Ry3), and § = (Rp Ry +
E3=R,2[ np+ 11V:|E0 t3|: na + Ty ]Eo, (A30) 2R3 — R3Ri3), y = (Ri2Ri3 + Ri3Ry3) (Ri2Ry2

af —ys af —ys Ri3R»). Equations (A3) describe all field amplitudes for this
geometry.
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